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Abstract 

Background  Long non-coding RNA (lncRNA) plays a vital role in tumor proliferation, migration, and treatment. Since 
it is challenging to standardize the gene expression levels detected by different platforms, the signatures composed 
of many immune-related single lncRNAs are still inaccurate. Utilizing a gene pair formed of two immune-related 
lncRNAs and strategically assigning values can effectively meet the demand for a higher-accuracy dual biomarker 
combination.

Methods  Co-expression and differential expression analyses were performed on immune genes and lncRNAs data 
from The Cancer Genome Atlas and the ImmPort database to obtain differentially expressed immune-related lncRNAs 
for pairwise pairing. The prognostic-related differentially expressed immune-related lncRNAs (PR-DE-irlncRNAs) pairs 
were then identified by univariate Cox regression and used for lasso regression to construct a prognostic model. Vari-
ous methods were used to validate the predictive prognostic performance of the model. Additionally, we explored 
the potential guiding value of the model in immunotherapy and chemotherapy and constructed a nomogram suit-
able for efficient prognosis prediction. Mechanistic exploration of anti-tumor immunity and mutational perspectives 
are also included. We also analyzed the correlation between the model and immune checkpoint inhibitors (ICIs)-
related, N6-methyadenosine (m6A)-related, and multidrug resistance genes.

Results  We used a total of 20 pairs of PR-DE-irlncRNAs to create a prognosis model. Quantitative real-time polymer-
ase chain reaction experiments further verified the abnormal expression of 11 lncRNAs in HNSCC cells. Various meth-
ods have confirmed the excellent performance of the model in predicting patient prognosis. We reasoned that lncR-
NAs/TP53 mutation might play a positive/negative anti-tumor role through the immune system by multi-perspective 
analyses. Finally, it was found that the prognostic model was closely related to immunotherapy and chemotherapy 
as well as the expression of ICIs/m6A/multidrug resistance-related genes.

Conclusion  The prognostic model performs excellently in predicting the prognosis of patients and provides 
the potential value of practical guidance for treatment.
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Introduction
In advanced stages of head and neck squamous cell car-
cinoma (HNSCC), an aggressive malignancy, mortality, 
and morbidity are high [1]. With approximately 800,000 
new cases and 430,000 new deaths worldwide each year, 
HNSCC is one of the most common causes of cancer-
related deaths [2, 3]. Surgery, radiotherapy, chemo-
therapy, and combination therapy are still the standard 
treatment methods for HNSCC [4]. Unfortunately, due 
to the frequent local and distant metastasis of HNSCC 
and the resistance to chemotherapeutics, there is cur-
rently no entirely satisfactory treatment for advanced 
HNSCC, which leads to a high mortality rate in patients 
[5, 6]. Although in recent years, the clinical application of 
immune checkpoint inhibitors (ICIs), such as nivolumab 
and pembrolizumab, has completely changed the treat-
ment outcome of metastatic or recurrent HNSCC. How-
ever, its objective response rate is still 20%. The risk of 
immune-related adverse events (irAEs) that can contrib-
ute to severe or fatal toxicities for patients hinder the wide 
application of ICI therapy [7–9]. In the combination ther-
apy of ICIs, the incidence of side effects is higher than that 
of ICIs monotherapy, and the side effects also occur faster 
[10, 11]. In addition, targeting CD44, a marker for cancer 
stem cell-like cells (CSCs), has recently been regarded as a 
promising therapeutic target for HNSCC treatment; how-
ever, further clinical applications are still being explored 
[12, 13]. As a type of RNA without protein-coding abil-
ity, long-chain non-coding RNA (lncRNA) not only par-
ticipates in gene regulation processes, such as regulating 
mRNA splicing, chromatin, histone remodeling, and tran-
scription regulation [14], but also participates in biological 
regulation processes such as tumor occurrence, develop-
ment, and metastasis [15, 16]. Increasing evidence shows 
that lncRNAs may play a vital role in the proliferation, 
migration, and treatment of HNSCC [17–20]. In recent 
years, lncRNAs have been identified to facilitate the resist-
ance to cisplatin, paclitaxel, 5FU, and other chemothera-
peutic drugs in various ways [21–25]. Overexpression of 
lncRNA-UCA1 can protect the expression of PDL1 from 
miRNAs, thereby upregulating the expression of PDL1 
and ultimately promoting the immune escape of GC cells 
[26]. Given higher tissue specificity and easier detection 
than mRNA, lncRNA is more suitable as a biomarker for 
tumor diagnosis and prognosis [27, 28]. Consequently, a 
growing number of studies note that ir-lncRNAs signals 
can predict the prognosis and treatment sensitivity of var-
ious cancers, such as melanoma, lung adenocarcinoma, 

and endometrial cancer [29–31]. Unfortunately, most 
of these predictive signatures are combinations of single 
lncRNAs. In contrast, the dual biomarker combination is 
superior to a single marker in terms of the accuracy of the 
cancer diagnosis model [32]. To achieve higher accuracy, 
it is indispensable to develop a model based on the com-
bination of double lncRNAs for HNSCC prognosis. Due 
to the technical differences between different platforms, 
it is difficult for the detected gene expression levels to be 
of the same standard [33]. Recently, novel gene pair sig-
natures have been developed to circumvent this problem 
subtly. By comparing the expression of two genes in each 
patient, the researchers assigned a value of 1 (expression 
of gene A >expression of gene B) or 0 (expression of gene 
A <expression of gene B) to this gene pair [33]. It is evi-
dent that such a combination of lncRNAs meets the need 
for a dual biomarker combination with higher accuracy.

LncRNAs have been demonstrated to regulate can-
cer progression through immune regulation, mainly by 
changing the immune microenvironment. Xiong et  al. 
found that with the upregulation of lncRNA-POU3F3 
expression in cancer-related cells, circulating regulatory 
T cells (Tregs) increased in gastric cancer patients [34]. 
In  vitro experiments further confirmed that lncRNA-
POU3F3 promoted Treg differentiation by activating 
TGFβ signaling, thereby promoting the proliferation of 
tumor cells [34]. In hepatocellular carcinoma (HCC), Jiang 
et al. also found that the highly expressed lncRNA-EGFR 
stimulated Treg production and continuous activation, 
resulting in the suppression of cytotoxic T cells [35]. In 
addition, RP11-284N8.3.1 and AC104699.1.1 are related 
to T cell activation and differentiation and are associated 
with the increasing survival rate of ovarian cancer [36].

We aspire to obtain differentially expressed immune-
related lncRNAs (DE-irlncRNAs) by combining 
the HNSCC RNA sequencing data obtained from 
the TCGA database and the immune-related genes 
obtained from the ImmPort database. The effective 
paired DE-irlncRNAs were then screened to find the 
prognostic-related DE-irlncRNAs pairs (PR-DE-irl-
ncRNAs pairs). Following this, a prognostic model was 
designed based on 20 pairs of PR-DE-irlncRNAs, and 
the sample risk score was calculated. We performed 
Risk plots, Receiver Operating Characteristic (ROC) 
curves, Kaplan–Meier (K-M) curves, Cox regression 
analysis, and clinical features subgroup analysis to 
verify the accuracy of the model’s predictive ability. 
In parallel, we investigated their possible mechanisms 
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of action in HNSCC by gene set enrichment analysis 
(GSEA), tumor immune microenvironment (TIME) 
analysis, and mutation analysis. Finally, to determine 
whether prognostic models can be applied to treatment 
guidance and prognosis evaluation for patients with 
HNSCC, immunophenotypic score (IPS) analysis, drug 
sensitivity analysis, ICIs/m6A/multidrug resistance-
related genes analysis and nomogram were used.

Methods
Data collection and collation
The transcription component data of 502 HNSCC sam-
ples and 44 adjacent normal tissues were downloaded 
from The Cancer Genome Atlas (TCGA) database. 
Tumor and normal oral tissue were not paired. Simulta-

neously, the clinical data (including overall survival, vital 
status, age, gender, grade, stage, T stage, and N stage) 
were obtained in an identical manner. For the follow-
ing analysis, 2483 immune-related genes (IRGs) were 
extracted from the ImmPort database.

Differential expression analysis and pairing of ir‑lncRNAs 
obtained by co‑expression analysis
By co-expression analysis, the threshold was set to the 
correlation coefficient >0.5 and p value < 0.001. The 
expression values of 1718 IRGs and 14,086 lncRNAs 
extracted from the expression matrix of TCGA were 
used to filter irlncRNAs. The R package “limma” was 
then applied to the differential expression of irlncRNAs 
between 504 HNSCC samples and 44 normal tissues 
to identify the DE-irlncRNAs according to the filter-
ing condition that was set to |log2FC (fold-change)| >1 
and FDR <0.001 [37]. The lncRNA pairs consist of two 
DE-irlncRNAs that were paired recurrently singly with 
each other. We defined lncRNA pair K as a comparison 
of the expression levels of lncRNA i and lncRNA j. The 
K equals 1 if the expression level of lncRNA i is higher 
than that of lncRNA j, and the reverse is K = 0. These 
values of lncRNA pairs K were used for further filtering 
for effectively matched lncRNA pairs. The lncRNA pairs 
K defined as 0 or 1 could be identified as effectively 
matched lncRNA pairs for the subsequent analysis on 
the condition that their numbers accounted for more 
than 20% and less than 80% of all samples.

Construction and evaluation of prognostic model
After integration, to filter for PR-DE-irlncRNAs pairs, we 
analyzed the data of HNSCC samples with complete 

overall survival (OS) and effectively matched lncRNA 
pairs by univariate Cox analysis (p value <0.001); 499 
samples with complete OS data and defined values of PR-
DE-irlncRNAs pairs were randomly assigned to the train-
ing set (n = 300) and the validation set (n = 199) at a ratio 
of 6:4 for the subsequent analysis. To screen out highly 
correlated PR-DE-irlncRNAs pairs, the lasso regression 
was used to analyze defined values of 97 PR-DE-irlncR-
NAs pairs, which could minimize the risk of overfitting 
for screening signatures. Finally, the optimal penalty 
parameter (λ) determined by the minimum 10-fold cross-
validation was employed to construct a prognostic model 
based on 20 PR-DE-irlncRNAs pairs. After optimizing 
the model, the formula for calculating the risk score of 
the sample was listed as follows:

Following the risk score of each sample calculation, the 
HNSCC samples from the three sets were respectively 
divided into the high-risk group and the low-risk group 
according to the median risk score of each set. Firstly, we 
used the risk curve and survival status graph to show the 
contact between the patient’s risk score and survival sta-
tus. The R package “SurvivalROC,” with the capability to 
plot muti-ROC curves containing other clinical factors, 
was used to draw ROC curves of risk score, which could 
evaluate the accuracy and optimality of the model in pre-
dicting the sample’s survival. In addition, we performed 
K-M analysis by R packages “survival” and “survminer” 
to compare the sample’s survival differences between the 
high-risk and low-risk groups [38], and these results were 
visualized by the survival curve. To detect whether the 
risk score could be used as an independent prognostic 
indicator of survival, we used univariate and multivariate 
Cox regression to analyze the relationship between avail-
able variables (age, gender, grade, stage, T, N, and risk 
score) and OS.

Assess the relationship between risk score and clinical 
characteristics
With the purpose of assessing the relationship between 
the clinical characteristics and the risk score derived from 
the prognostic model, we conducted the chi-square test 
and used the heatmap to visualize the distribution of the 
clinical characteristics of every sample between the high-
risk and low-risk groups within the whole set. Moreover, 
to compare differences in the risk score among different 
groups of these clinical features, we utilized the Mann–
Whitney U test for visualization. R package “Complex-
Heatmap,” “limma,” and “ggpubr” were used in these two 

Risk score =
n

i=1
corresponding coefficient×PR−DE−irlncRNAs pairs

′

defined value
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analyses [39]. Additionally, we used the K-M test to iden-
tify whether the prognostic model retained the ability to 
predict the OS in each subgroup with different clinical 
characteristics.

Gene set enrichment analysis
We applied GO and KEGG enrichment analyses for 
the differential expressed genes (DEGs) between the 
high-risk and the low-risk groups to investigate the 
biological functions and pathways related to the prog-
nostic model. We set the threshold to |log2FC| ≥1 and 
FDR <0.05 to filter out DEGs. In addition to utilizing 
the Gene Ontology (GO) for investigating possible 
biological functions, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) was also used to identify possi-
ble pathways involved in DEGs. The research was con-
ducted by the R package “clusterProfiler,” “org.Hs.eg.
db,” and “enrichplot,” with corresponding results dis-
played in bar plots and bubble graphs [40].

Evaluate the relationship between risk score and immune 
response
To evaluate the correlation between immune cells/
stromal cells and risk score, the R package “estimate” 
was used to calculate immune and stromal cell scores 
for each sample. We then compared the difference in 
immune and stromal cell scores of patients between 
the high-risk and low-risk groups. Moreover, Spearman 
correlation analysis was used to analyze the correlation 
between immune/stromal cells score and risk score. To 
further explore the relationship between tumor-infil-
trating immune cells and the prognostic model, we used 
the immune infiltrating cell content of each HNSCC 
sample calculated by the five most advanced algorithms 
(including TIMER, CIBERSORT, XCELL, QUAN-
TISEQ, and EPIC) from the TIMER 2.0 database (timer.
comp-genomics.org). We applied Spearman correlation 
analysis to evaluate the connection between risk score 
and immune infiltrating cells and used the point graph 
to visualize the correlation results. Only the results with 
the significant correlation (p <0.05) were demonstrated. 
Mann–Whitney U test analysis was utilized to compare 
the content of immune infiltrating cells between high-
risk and low-risk groups, with final results displayed in 
violin plots. The R packages “ggplot2,” “scales,” “ggtext,” 
and “vioplot” were used in the aforementioned analy-
ses [40]. Besides, the single-sample gene set enrichment 
analysis (ssGSEA) was conducted using the R packages 
“GSEABase” and “gsva” to further quantify the scores 
of 16 immune cells and 13 immune functions, ena-
bling exploration of their relationship with risk score. 

Spearman correlation and Mann–Whitney U test analy-
ses were also used during this process.

Mutational analysis
The somatic gene mutation data of HNSCC samples 
were downloaded from the TCGA database to explore 
the relationship between gene mutations and the prog-
nostic model. VarScan was used to examine MAF files of 
somatic mutations, while the R package “GenVisR” was 
employed to visualize the 30 most frequently mutated 
genes in both high-risk and low-risk groups [41]. Tumor 
mutation burden (TMB), defined as the number of 
somatic cells, coding, indel mutations, and base substi-
tutions in a million bases in the genome [42], was calcu-
lated by Perl software. To explore the effect of TMB on 
survival, we used K-M analysis to compare the OS differ-
ence between the high TMB and low TMB groups. After 
stratifying TCGA samples based on the TP53 mutation 
state into wild and mutant groups, we compared the dif-
ference in the risk score between the TP53 mutant and 
the TP53 wild groups, thus exploring the association of 
TP53 mutation with immune response. Additionally, 
we used the K-M analysis to compare the differences in 
OS between the two groups. To explore the association 
between TP53 mutation state and immune infiltrating 
cells, we applied the Cibersort deconvolution algorithm 
to obtain matrix data of the ratio of 22 immune cells 
in each tumor sample based on RNA sequencing data 
according to the filter threshold of p < 0.05 [43]. We 
compared and visualized immune cell content between 
the two groups using R packages “Limma” and “Vioplot” 
[44] and also observed the expression difference of PDL1 
(CD274) between the two groups due to the significant 
role of TP53 mutation in predicting the effectiveness of 
PD1/PDL1.

Explore the application of the prognostic model 
in immunotherapy
Given the critical role of ICIs in immunotherapy, the 
Spearman correlation analysis was run to explore the 
connection between risk score and expression of ICIs-
related genes. In addition, we compared the difference 
in ICIs-related genes’ expression of samples between 
high-risk and low-risk groups to validate the correla-
tion results. Analogous methods were also applied to 
m6A-related genes and multidrug resistance genes, 
such as MRP1 (ABCC1) and MRP3 (ABCC3), which 
probed their correlation with the prognostic model. R 
packages “ggplot2” and “reshape2” were included in the 
analysis [45].

We downloaded the IPS from the Atlas of Cancer Immu-
nity (TCIA) database. IPS of the patients was obtained by 
evaluating the gene expression of four cell types (including 
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effector cells, immunosuppressive cells, MHC molecules, 
and immunomodulators) that determined immunogenic-
ity [46]. Spearman correlation analysis was operated to 
evaluate the correlation between risk score and four types 
of IPS, as well as to compare the difference in IPS between 
the high-risk and low-risk groups. The R package “pRRo-
phetic” was used to predict the half-inhibitory concentra-
tion (IC50) of chemotherapeutics recommended by the 
NCCN guidelines for treating each sample of HNSCC 
[47]. In addition to the correlation between the IC50 of 
each drug and the risk score, the IC50 difference between 
high-risk and low-risk populations was also analyzed. To 
predict the IC50 of the drug in this R package, we applied 
the cell line expression data from the Cancer Drug Sensitiv-
ity Genomics (GDSC) database and RNA sequencing tran-
scriptome data from the TCGA database to construct the 
ridge regression model [48].

Construction and verification of Nomogram
A multivariate Cox regression model consisted of risk 
scores and clinical factors that were significantly related 
to prognosis, as filtered out by univariate Cox regression, 
in order to create a more clinically appropriate quantita-
tive tool for predicting the 1-, 2-, and 3-year OS. The final 
result was presented as Nomogram, while the calibration 
curve was used to estimate the accuracy of survival pre-
diction. In addition, we employed the multi-factor ROC 
curve to verify the accuracy of the Nomogram and opti-
mality in predicting the 1-, 2-, and 3-year OS. In this pro-
cess, the R packages “rms,” “survival,” and “survivalROC” 
were used.

Validation of abnormal expression of modeled genes 
in HNSCC cells
We purchased human oral squamous cell carcinoma cells 
(scc9 and cal27) from Shanghai Anwei Biotechnology 
Co., Ltd. In addition, we purchased normal oral gingival 
epithelial cell line (HEG) from Shanghai Baiye Biotech-
nology Center. We cultured these three cells in complete 
DMEM (Gibco, Cat#C11995500BT) or DMEM/F12 
(Gibco, Cat#C11330500BT) containing 10% fetal bovine 
serum (Excell, Cat#FSP500) and 1% penicillin-streptomy-
cin liquid (Solarbio, Cat#P1400). All cells were cultured 
at 37 °C in 5% CO2’s humidified incubator.

The 20 PR-DE-irlncRNA pairs used for modeling com-
prised of 35 lncRNAs. We endeavored to design primers for 
these lncRNAs required for QRT-PCR (quantitative real-
time polymerase chain reaction) experiments. Ultimately, 
we only succeeded in designing primers for 14 lncRNAs 
that can be used effectively in QRT-PCR. Table 1 listed the 
primer sequences of 15 lncRNAs. Total RNA was extracted 
and purified from three cells using TransZol Up Plus RNA 
Kit (TRANS, Beijing, China), followed by cDNA synthesis 
with HiScript® III RT SuperMix for qPCR (+gDNA wiper) 
(Vazyme, Nanjing, China) according to the manufacturer’s 
instructions. QRT-PCR was performed using the QuantS-
tudio™ 3 96 Real-time Fluorescent Quantitative PCR Sys-
tem (Applied Biosystems, Waltham, Massachusetts, USA) 
and Taq Pro Universal SYBR qPCR Master Mix (Vazyme, 
Nanjing, China). After normalizing all measured values to 
relative expression levels of β-actin via the 2−ΔΔCt method, 
we compared differences in the expression levels of 15 
lncRNAs between cal27/scc9 and HEG cells.

Table 1  All primer sequences used in QRT-PCR experiment

Gene Forward primer Reverse primer

β-Actin CTG​TAG​AGA​AGA​GGA​ACC​GTAGC​ TGG​TTG​ACC​TAG​AAA​TGG​AAG​GAA​

AC098487.1 CAG​AAC​CTA​CGC​ACC​TAC​G CCG​TCT​ACA​CTG​GAA​GCA​G

MIR924HG ACC​ACC​GAG​TTG​ACA​AAA​GT GCT​GCT​GGA​GGT​TTA​CTT​GA

LINC00944 CCT​CTT​AAT​CCT​CTG​TCC​TCC​ATC​ CTC​TCC​AGT​GTT​ATG​AAG​TTC​AAG​T

RUSC1-AS1 TGC​ATT​TGT​TGT​CCT​GGA​TG GCT​GGT​TTC​AGG​GTA​CAG​GA

LINC00205 GGC​TTT​TGT​GCC​TGG​AAG​TG GGG​AAG​TTC​TGA​GCT​GGC​AT

SNHG25 GCA​GGT​TCC​GGG​AGG​TCA​ CAA​ACC​ACT​TTA​TTG​ACG​GGAA​

PTOV1-AS2 CGG​CAC​TAG​GGA​AAC​GTC​AT TGT​CCA​CCG​ATG​ATC​TCC​CT

KDM4A-AS1 TTG​CCT​GGA​TGG​CTG​AGA​ATC​ TTC​CTT​TCA​CCC​TCC​TTC​CTTC​

C5orf66-AS1 CGG​GAT​CAA​CCC​TCT​GCT​TT TTC​TTG​AGA​AGC​GAC​TGC​GT

TMPO-AS1 AGC​GAC​AAG​ATC​CCT​TTC​ATTC​ CGT​TGC​CGG​ACT​TCA​CCT​T

AL354733.3 GTC​ATT​GGC​GTT​CGT​GGA​TG TGT​GAA​AAC​CCT​GGT​TGG​CT

HOXC-AS1 CAA​CTC​CAT​CTC​TGC​GAC​AC AAC​AAG​CTA​CTT​GCC​CAC​GA

AL390719.2 ATG​GGA​TAG​GGA​AGG​CAG​GT CAG​GGT​CCT​TCC​TGT​CAC​AC

AL133243.2 AGT​CCA​CCA​TTG​CTC​AAC​CGA​ ATC​GGC​CTT​ACA​TCT​CCT​GGC​
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Statistical analysis
According to the distribution characteristics, Student’s 
t-test or Mann–Whitney U test was utilized to compare 
continuous variables. At the same time, the chi-square 
test or Fisher exact test was used to compare categorical 
variables. DE-irlncRNAs pairs related to prognosis, which 
univariate Cox regression analysis confirmed, were used 
to screen out the optimal genes to construct the prognos-
tic model by lasso regression. Multivariate Cox regression 
was used to construct the Nomogram. The study employed 
the K-M curve with the log-rank test to compare survival 

between different groups, while the ROC curve was used 
to evaluate the prognostic predictive ability of each factor. 
The univariate and multivariate Cox regression analyses 
were applied to evaluate the independent predictive value 
of risk scores. Spearman or Pearson was used for analyz-
ing the correlation between two variables. We performed 
all analyses in our study in R programming language (ver-
sion 4.0.3), Perl (version 5.32.1001), and SPSS Statistics 
software 22. All statistical p values were two-tailed, and the 
results identified as statistically significant had the thresh-
old of the p value <0.05 or FDR <0.05.

Fig. 1  Flow chart of prognostic model construction and verification
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Results
Data acquisition
In Fig.  1, we show the flow chart outlining the progno-
sis model making. We identified 442 ir-lncRNAs under 
the condition of the co-expression analysis on RNA 

sequencing data of IRGs and lncRNAs. Subsequent dif-
ferential expression analysis of the expression levels of 
442 ir-lncRNAs revealed significant differences (Fig. 2A), 
with the expression of 110 ir-lncRNAs increased and 12 
decreased (Fig. 2B).

Fig. 2  Description of DE-irlncRNAs and PR-DE-irlncRNAs pairs. A The heat map demonstrated the expression profile of DE-irlncRNAs. B The volcano 
chart revealed the regulation profile of DE-irlncRNAs. C The results of univariate Cox regression analysis on the basis of 20 PR-DE-irlncRNAs pairs 
and survival rate were displayed in the forest plot
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Construction of prognostic model and analysis 
of corresponding PR‑DE‑ir‑lncRNAs pairs
Through integrating mRNA expression and clinical data 
of HNSCC patients, we acquired the clinical features of 
499 HNSCC samples shown in Table 2. We filtered out 97 
PR-DE-irlncRNAs pairs through operating univariate Cox 
analysis based on OS. Our study employed lasso regres-
sion analysis to construct the prognostic model using 
the data from the training set. Finally, 20 PR-DE-irlncR-
NAs pairs were identified based on the optimum value 
of λ (Fig. S1). Table 3 showed 20 PR-DE-irlncRNAs pairs, 
along with their corresponding coefficients in the model 
for calculating the risk score of each sample. AC007​
038.1|AC084​018.1, ZNF68​7−AS1|AL354733.3, TMPO−
AS1|ATP1B​3−AS1, AC132192.2|AC004​148.1, LINC0​
1063|AC116914.2, RUSC1​−AS1 |AC004​687.1, LINC0​

0944|AC004​687.1, CHKB−DT|AL365330.1, MIR92​
4HG|MIR9−3HG, and AL365330.1|MIR9−3HG (HR 
>1.0) shown in Fig.  2C played negative significant roles, 
while AL390719.2|AL133243.2, AC096992.2|HOXC-AS1, 
C5orf66-AS1|KDM4A-AS1, C5orf66-AS1|AP000251.1, 
AC106820.3|KDM4A-AS1, PTOV1-AS2|SNHG25, PTOV1- 
AS2|AL132712.1, PTOV1-AS2|LINC00205, AC008735.2| 
SNHG25, and AL360181.2|AC098487.1 (HR <1.0) played 
positive roles in survival.

Predictive capability test of prognostic model
The distribution of risk score, survival time, and status of 
three sets was shown in Fig. 3A–C, which indicated that 
patients with higher risk scores had shorter OS and worse 
survival conditions. In all sets, we observed a signifi-
cantly higher survival probability in the low-risk patients 

Table 2  Clinical characteristics of the HNSCC samples in training, validation, whole sets

Training set (n = 300) Validation set (n = 199) Whole set (n = 499)

Gender (%)

  Male 223 (74.3%) 143 (71.9%) 366 (73.3%)

  Female 77 (25.7) 56 (28.1%) 133 (26.7%)

  Age (median, range) 60 (19–900) 61 (26–87) 61 (19–90)

Survival status

  OS days (media, range) 547(1–5252) 580 (14–6417) 558 (1–6417)

  OS state (alive (%)/dead (%)) 178 (59.3%)/122 (40.7%) 126 (63.3%)/73 (36.7%) 304 (60.9%)/195 (39.1%)

Grade (%)

  Grade1 44 (14.7%) 17 (8.6%) 61 (12.2%)

  Grade2 180 (60.0%) 118 (59.3%) 298 (59.7%)

  Grade3 67 (22.3%) 52 (26.1%) 119 (23.9%)

  Grade4 2 (0.7%) 0 (0.0%) 2 (0.4%)

  Unknown 7 (2.3%) 12 (6%) 19 (3.8%)

Stage (%)

  I 14 (4.7%) 11 (5.5%) 25 (5.0%)

  II 44 (14.7%) 25 (12.6%) 69 (13.8%)

  III 40 (13.3%) 38 (19.1%) 78 (15.7%)

  IV 160 (53.3%) 99 (49.7%) 259 (51.9%)

  Unknown 42 (14.0%) 26 (13.1%) 68 (13.6%)

T (%)

  0 1 (0.3%) 0 (0.0%) 1 (0.2%)

  1 27 (9%) 18 (9.0%) 45 (9.0%)

  2 72 (24.0%) 59 (29.6%) 131 (26.3%)

  3 58 (19.3%) 38 (19.1%) 96 (19.2%)

  4 110 (36.7%) 61 (30.7%) 171 (34.3%)

  Unknown 32 (10.7%) 23 (11.6%) 55 (11.0%)

N (%)

  0 104 (34.7%) 66 (33.2%) 170 (34.1%)

  1 36 (12%) 29 (14.6%) 65 (13.0%)

  2 103 (34.3%) 61 (30.6%) 164 (32.9%)

  3 3 (1%) 4 (2.0%) 7 (1.4%)

  Unknown 54 (18%) 39 (19.6%) 93 (18.6%)

https://www.ncbi.nlm.nih.gov/nuccore/AC007038.1
https://www.ncbi.nlm.nih.gov/nuccore/AC007038.1
https://www.ncbi.nlm.nih.gov/nuccore/AC084018.1
https://www.ncbi.nlm.nih.gov/gene/100507670
https://www.ncbi.nlm.nih.gov/gene/100128191
https://www.ncbi.nlm.nih.gov/gene/100128191
https://www.ncbi.nlm.nih.gov/gene/?term=ATP1B3%E2%88%92AS1
https://www.ncbi.nlm.nih.gov/nuccore/AC004148.1
https://www.ncbi.nlm.nih.gov/gene/101929769
https://www.ncbi.nlm.nih.gov/gene/101929769
https://www.ncbi.nlm.nih.gov/gene/284618
https://www.ncbi.nlm.nih.gov/nuccore/117414206/
https://www.ncbi.nlm.nih.gov/gene/387895
https://www.ncbi.nlm.nih.gov/gene/387895
https://www.ncbi.nlm.nih.gov/nuccore/117414206/
https://www.ncbi.nlm.nih.gov/gene/100144603
https://www.ncbi.nlm.nih.gov/gene/647946
https://www.ncbi.nlm.nih.gov/gene/647946
https://www.ncbi.nlm.nih.gov/gene/254559
https://www.ncbi.nlm.nih.gov/gene/254559
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compared to the high-risk patients (Fig.  3D–F), which 
showed the ability of our prognostic model to identify 
high-risk patients based on their survival conditions. 
Figure  3G–I illustrated that the area under the curve 
(AUC) values of risk scores for all sets at 1, 2, and 3 years 
exceeded 0.7, indicating the higher accuracy of our mod-
el’s prognosis prediction. In addition, we also found that 
the AUC values of the risk score at 1, 2, and 3 years were 
all higher than other clinical factors, which represented 
that our model had the optimal effect. The results of the 
univariate Cox regression analysis in Table 4 revealed the 
significant correlation between survival time/state and 
the risk score of the three sets (p < 0.05). After adjusting 
other clinical confounding factors by multivariate Cox 
regression analysis, the risk scores of the three sets still 
remained significantly correlated with survival (p < 0.05), 
thereby indicating that the risk score could serve as an 
independent predictor of prognosis.

Relationship between risk score and clinical characteristics
The distribution of clinical features of all samples with 
the increase of risk score was shown in Fig. 4A, indicat-
ing a significant association between fustat (p < 0.001), 
age (p < 0.05), T (p < 0.01), and N (p < 0.05) and the risk 
score calculated by the prognostic model. Furthermore, 
higher mortality observed in samples with the advanced T 
stage and N stage was more concentrated in the high-risk 
group. It was noteworthy that many clinically valuable 

results were found in the further difference analysis of the 
relationship between risk score and different clinical char-
acteristics groups (Fig. 4B–H). Higher risk scores existed 
in older than 65 and dead samples (Fig.  4B–C). Sam-
ples in stage III–IV owned higher risk scores compared 
to stage I and II (Fig.  4D). Figure  4E demonstrated the 
positive relationship between the risk score and T grade. 
An analogous result was also discovered in the N stage 
(Fig. 4F). Further survival analysis showed that the prog-
nostic model had a superb ability for OS across each of 
the other subgroups with distinct clinical characteristics 
(Fig. S2A-G, 5I–P), except the stage I subgroup (Fig. S2H). 
Additionally, within these subgroups, samples in the high-
risk group exhibited inferior OS (p < 0.05).

Characteristics of immune microenvironment in HNSCC
The Spearman correlation results implied the negative 
correlation between the risk score and the immune cell 
score (p < 0.001) (Fig.  5A). Higher immune cell scores 
were discovered in patients in the low-risk group (p < 0.01) 
(Fig. 5B), which further confirmed the accuracy of the cor-
relation results. Unfortunately, no significant results were 
found between stromal cell score and risk score (Fig. 5C–
D). To enhance the accuracy of the data, we used the 
immune infiltrating cell contents using six most advanced 
algorithms and ssGSEA for calculation in this part of the 
comprehensive analysis. Following the Spearman correla-
tion analysis, B cell, T cell CD8+, myeloid dendritic cell, 
B cell memory, B cell plasma, T cell gamma delta, T cell 
follicular helper (Tfh) cell, Treg cell, mast cell activated, 
and natural killer (NK) cell activated were observed to 
have the negative correlation with the risk score, while 
mast cell resting and eosinophil had the positive correla-
tion with the risk score. The bubble chart displayed all the 
results of the correlation analysis(Fig.  5E–F). In the fur-
ther Mann–Whitney U test, significant differences in the 
content of almost all cells between the high-risk and low-
risk groups were found (Fig. 5G). Besides, the risk score 
was found to have a negative correlation with the scores 
of C-C Chemokine receptors (CCR), antigen‐presenting 
cell (APC) co-stimulation, type II IFN response, check-
point, cytolytic activity, human leukocyte antigen (HLA), 
inflammation-promoting, T cell co-stimulation, and T cell 
co-inhibition (p < 0.05) (Fig.  5H). Among them, check-
point, cytolytic activity, HLA, inflammation-promoting, T 
cell co-stimulation, and type II interferons (IFN) response 
in the low-risk group were observed to own higher scores 
(P < 0.05) (Fig. 5I). Figure S3A-C further supports the rel-
evant results by the computation of other methods.

Mutations associated with prognostic model
We demonstrated the overviews of mutations in the 
top 30 most common genes for 238 samples from the 

Table 3  20 PR-irlncRNAs pairs and corresponding coefficients 
used to construct prognostic model

Gene Coef

AL390719.2|AL133243.2 −0.04666

AC096992.2|HOXC-AS1 −0.2016

AC007038.1|AC084018.1 0.114178

ZNF687-AS1|AL354733.3 0.221731

TMPO-AS1|ATP1B3-AS1 0.288711

C5orf66-AS1|KDM4A-AS1 −0.07542

C5orf66-AS1|AP000251.1 −0.12957

AC106820.3|KDM4A-AS1 −0.62719

PTOV1-AS2|SNHG25 −0.16137

PTOV1-AS2|AL132712.1 −0.00603

PTOV1-AS2|LINC00205 −0.15718

AC132192.2|AC004148.1 0.042828

AC008735.2|SNHG25 −0.12269

LINC01063|AC116914.2 0.151718

RUSC1-AS1|AC004687.1 0.262677

LINC00944|AC004687.1 0.170279

CHKB-DT|AL365330.1 0.141328

MIR924HG|MIR9-3HG 0.177316

AL360181.2|AC098487.1 −0.01644

AL365330.1|MIR9-3HG 0.292315
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Fig. 3  We used risk plots and survival point map, survival curves, and 1-, 2-, and 3-year multi-factor ROC curve to assess the performance 
of the prognostic model, which was respectively established by the data in the TCGA training set, test set, and the whole set. A–C Risk plots 
and survival point map. D–F Survival curves. G 1-year multi-factor ROC curves. H 2-year multi-factor ROC curves. I 3-year multi-factor ROC curves
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high-risk group and 223 from the low-risk group, respec-
tively (Fig. 6A–B). Despite no difference in TMB between 
the two groups, a worse prognosis was still observed 
in the high TMB group (Fig.  6C–D). As anticipated, a 
higher risk score (p < 0.001) (Fig. 6E) and a worse prog-
nosis (p <0.05) (Fig. 6F) were discovered in the patients 
with TP53 mutations. More than that, we observed sig-
nificantly lower content of T cells CD8, T cells CD4 
memory activated, Tfh, Treg, Macrophages M1, Mast 
cells resting, and Mast cells activation of patients in the 
TP53 mutation group (p < 0.05) (Fig.  6G). Conversely, 
the content of T cells CD4 memory resting, macrophages 
M0, and dendritic cells resting was strikingly higher in 
the TP53 mutation group (Fig. 6G). At the same time, the 
expression of PDL1 (CD274) was significantly lower in 
the TP53 mutant group (Fig. 6H).

Correlation between prognostic model and ICIs/m6A/
multidrug resistance‑related genes’ expression
We evaluated the correlation between 46 ICIs-related 
genes and risk scores (Fig. S4A-B). The expression of 
TNFSF9, CD44, and CD276 had a significant posi-
tive correlation with the risk score, while the other 30 

ICIs-related genes showed a negative correlation with 
risk scores, except for CD80, PDCD1LG2, HHLA2, 
CD70, CD86, NRP1, ICOSLG, CD274, TNFSF18, CD40, 
IDO1, HAVCR2, and BTNL2. Except for TNFSF9 and 
TNFRSF9, the differential expression of other genes with 
significant correlation in Fig. S4A was again confirmed 
in different risk scores (Fig. S4B). In addition to CD44 
and CD276, the other 29 ICIs-related genes in the low-
risk group had higher expression levels. Besides, we 
also found that the risk score had a negative correlation 
with the expression level of YTHDC1 and YTHDC2 
while a positive correlation with HNRNPC (Fig. S4C). 
Aside from HNRNPC, we tested the significant correla-
tion results of YTHDC1 and YTHDC2 in the difference 
analysis (Fig. S4D). In addition, we discovered strikingly 
higher expression levels of RBM15, YTHDC1, YTHDC2, 
METTL14, WTAP, and METTL3 in the low-risk group. 
Although there was no significant correlation between 
the expression of the resistance gene MRP1 (ABCC1) 
and the risk score, higher MRP1 expression was still 
observed in the low-risk group (Fig. S4E-F). Meanwhile, 
no significant results were seen in the correspondence 
analysis of MRP3 (ABCC3) (Fig. S4G-H).

Table 4  The results of univariate and multivariate Cox regression analysis include clinical factors and risk scores in three sets

Italics indicates that the results are statistically significant

HR Hazard ratio, CI Confidence interval

Variables Univariate cox P1 Multivariate cox P2

HR 95%CI HR 95%CI

Training set

  Age 1.03 1.02-1.05 <0.001 1.03 1.02-1.05 <0.001

  Gender 0.90 0.58-1.38 0.630 0.90 0.57-1.42 0.642

  Grade 0.99 0.74-1.33 0.955 1.05 0.74-1.48 0.795

    T 1.29 1.05-1.58 0.015 1.16 0.92-1.47 0.215

    N 1.48 1.20-1.83 <0.001 1.45 1.11-1.90 0.006

Risk score 2.25 1.89-2.68 <0.001 2.12 1.76-2.56 <0.001

Test set

  Age 1.01 0.99-1.03 0.483 0.99 0.97-1.02 0.582

  Gender 0.59 0.35-0.99 0.045 0.60 0.34-1.06 0.081

  Grade 1.42 0.94-2.13 0.095 1.43 0.92-2.22 0.109

    T 1.21 0.93-1.55 0.149 0.98 0.73-1.30 0.878

    N 1.30 0.98-1.65 0.075 1.22 0.92-1.61 0.168

Risk score 1.58 1.33-1.87 <0.001 1.53 1.28-1.83 <0.001

Whole set

  Age 1.02 1.01-1.04 <0.001 1.02 1.00-1.03 0.016

  Gender 0.76 0.55-1.06 0.101 0.93 0.65-1.33 0.691

  Grade 1.12 0.88-1.42 0.357 1.11 0.86-1.44 0.425

    T 1.27 1.08-1.49 0.004 1.05 0.88-1.26 0.574

    N 1.38 1.17-1.63 <0.001 1.31 1.10-1.57 0.003

Risk score 1.78 1.59-1.99 <0.001 1.66 1.48-1.87 <0.001
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Fig. 4  The relation between different subgroups of each clinical feature and risk score. A The distribution of different subtypes of each 
clinical feature for each sample with the increase of risk score. B–H Risk score differences between patients with different subtypes in different 
clinicopathological features
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Fig. 5  The association analysis between risk score and immune cells scores, stromal cells score, immune cell content calculated by six most 
advanced algorithms, 16 immune infiltrating cells and 13 immune functions calculated by ssGSEA and the comparison of different parameters 
between different risk groups, including immune cells score, stromal cells score, 16 immune infiltrating cells, and 13 immune functions. A, B 
Immune cells score. C, D Stromal cells score. E Immune cell content calculated by the six most advanced algorithms. F, G 16 immune infiltrating 
cells. H, I 13 immune functions. The symbol above the histogram shows the significance of the difference. *p < 0.05; **p < 0.01; ***p < 0.001; ns, 
no significance
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Prognostic model associated with immunotherapy effect 
and chemotherapy sensitivity
The IPS evaluated the curative effect of the correspond-
ing ICIs administered to patients. Patients with higher 
IPS exhibited a superior response to ICIs [49]. Although 
there is no practical evidence for further difference 

analysis (Fig.  7B–E), we still found that IPS-CTLA4-
POS+PD1-NEG and IPS-CTLA4-POS+PD1-POS had 
a negative correlation with the risk score (Fig.  7A). We 
also predicted the IC50s of 7 chemotherapeutic agents 
used for HNSCC treatment, including cisplatin, pacli-
taxel, BIBW2992, doxorubicin, etoposide, docetaxel, and 

Fig. 6  Mutation analysis. A, B Waterfall charts reflect the gene mutations of patients in the high-risk and low-risk groups. C The contrast of TMB 
content between the high-risk group and low-risk group. D The KM survival correlation analysis shows the difference between the high TMB 
and the low TMB groups. E The display of the risk score differences between the TP53 mutant group and TP53 wild group. F The KM survival analysis 
reveals the difference in survival probability between the TP53 mutation group and TP53 wild groups. G The fraction differences between the TP53 
mutant group and TP53 wild group in 22 immune cells. H The difference in the expression level of PDL1 between the high-risk and low-risk groups
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methotrexate. The IC50 of doxorubicin and docetaxel was 
observed to negatively correlate with a risk score, while 
etoposide and methotrexate had a positive one (Fig. 7F). 
Except for etoposide, the correlation results of the other 
three chemotherapeutic agents were supported by fur-
ther difference analysis (Fig.  7J, L–M). Figure  7G–M 
shows the results of the differential analysis for these 
seven drugs. It was concluded that our model might hold 
potential in predicting the therapeutic efficacy of the cor-
responding immunotherapy and chemotherapy.

Building and evaluation of Nomogram
Age, T stage, N stage, and risk score were subsumed 
into multivariate Cox regression model, and the relevant 
data from the training set samples were used to draw 
the Nomogram (Fig.  8A). After applying the calibration 
curve, it was confirmed that the Nomogram exhibited 
good consistency in predicting the actual OS at 1, 2, and 
3 years across three sets (Fig.  8B–J). The multi-factor 
ROC also supported the effectiveness of the Nomogram 
in predicting survival rate, with our Nomogram owning a 

Fig. 7  The relevance analysis between risk score and four kinds of IPSs and sensitivity of the seven chemotherapy drugs and their comparison 
between low-risk and high-risk groups. A–E Four kinds of IPSs. F–M Sensitivity test scores of 7 chemotherapeutic drugs
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Fig. 8  Establishment and verification of Nomogram. A The Nomogram with the effects of predicting the 1-, 2-, and 3-year survival probability 
of HNSCC patients. 1-, 2-, and 3-year internal calibration curves are displayed respectively. B–D Based on the training set. E–G Based on the test set. 
H–J Based on the whole set
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better ability to predict survival (AUC >0.7) and excelling 
in all factors predicting survival across all sets (Fig. S5).

Gene set enrichment analysis
Two hundred thirty differential genes were identi-
fied between the high- and low-risk groups. Biological 
processes (BP), cellular component (CC), and molecu-
lar functions (MF) significantly related to these genes 
were enriched and displayed in Fig. S6A. Enriched BPs 
have been observed to be all related to immunity, such 
as humoral immune response mediated by circulating 
immunoglobulin, complement activation, classical path-
way, complement activation, immunoglobulin-mediated 
immune response, B cell-mediated immunity, humoral 
immune response, lymphocyte-mediated immunity, 
adaptive immune response based on somatic recombi-
nation of immune receptors built from immunoglobu-
lin superfamily domains, immune response-activating, 
cell surface receptor signaling pathway, and immune 
response-activating signal transduction. In addition, 
immune-related functions such as immunoglobulin com-
plex, immunoglobulin complex, circulating, antigen bind-
ing, and immunoglobulin receptor binding are observed 
in enriched CCs and MFs. Unfortunately, immune-
related pathways have not been enriched, replaced by 
nicotine addiction, primary immunodeficiency, linoleic 
acid metabolism, hematopoietic cell lineage, IL-17 signal-
ing pathway, mineral absorption, staphylococcus aureus 
infection, drug metabolism-cytochrome P450, estrogen 
signaling pathway, cell adhesion molecules, and ferropto-
sis (Fig. S6B).

Validation of abnormal expression of modeled genes 
in HNSCC cells
In OSCC cells (scc9 or cal27), the relative RNA expres-
sion levels of AC098487.1, MIR924HG, RUSC1-AS1, 
LINC00205, SNHG25, KDM4A-AS1, AL354733.3, HOXC-
AS1, AL390719.2, and AL133243.2 were higher (Fig. 9A–B, 
E–H, J, and L–N). In addition, we also observed signifi-
cantly lower relative RNA expression levels of C5orf66-AS1 
in OSCC cells (scc9 or cal27, Fig. 9K). These results were 
consistent with those obtained by bioinformatics analysis. 
Unfortunately, we did not observe significantly abnormal 
relative RNA expression levels of LINC00944, PTOV1-
AS2, and TMPO-AS1 in OSCC cells (Fig. 9C–D and I).

Discussion
Currently, most of these predictive signatures were com-
binations of single lncRNAs [50, 51]. However, in con-
trast, the dual biomarker combination has been shown 
to outperform a single marker in terms of the accuracy 
of cancer diagnostic models [32]. Inspired by the strat-
egy of matching immune-related genes, we paired the 

DE-irlncRNAs into lncRNA pairs that was not affected by 
the expression level. We constructed a prognostic model 
based on 20 PR-DE-irlncRNAs pairs. First, we selected 
the PR-DE-irlncRNAs pairs that were effectively matched 
based on the data obtained from the TCGA database and 
subsequently developed an effectively prognostic model 
for HNSCC patients. The predictive value of the model 
was then verified through a variety of methods. Moreo-
ver, our model was closely related to ICIs/m6A/multid-
rug resistance-related genes’ expression, with excellent 
clinical applicability. Finally, our analysis revealed that 
immune cells, immune function, and TP53 mutations 
may be implicated in the progress of HNSCC.

As a current research hotspot, irlncRNAs have been 
used in the signatures of various cancers. AC007038.1| 
AC084018.1, ZNF687−AS1|AL354733.3, TMPO−AS1|ATP1B3−
AS1, AC132192.2|AC004148.1, LINC01063|AC116914.2, RUSC1− 
AS1|AC004687.1, LINC00944|AC004687.1, CHKB−DT|AL36 
5330.1, MIR924HG|MIR9−3HG, and AL365330.1|MIR9−3HG 
in model played negative significant roles, while AL390719.2| 
AL133243.2, AC096992.2|HOXC−AS1, C5orf66−AS1|KDM 
4A−AS1, C5orf66−AS1|AP000251.1, AC106820.3|KDM4A−
AS1, PTOV1−AS2|SNHG25, PTOV1−AS2|AL132712.1, 
PTOV1−AS2|LINC00205, AC008735.2|SNHG25, and 
AL360181.2|AC098487.1 played positive roles in HNSCC 
patients’ survival. The PR-DE-irlncRNAs used in this study 
to establish a prognostic model have also been determined 
to possess a brilliant predictive value for the prognosis of 
patients in other cancers.

Xu et al. identified AL390719.2 as one of the key prog-
nostic lncRNAs for both 10- and 5-year survival rates 
in colorectal cancer [52]. C5orf66-AS1 prevents oral 
squamous cell carcinoma by inhibiting cell growth and 
metastasis [53] and has been verified as a biomarker 
for various cancers [54, 55]. Studies have demonstrated 
that AL354733.3 exhibits a positive correlation with 
autophagy genes and can serve as an independent prog-
nostic indicator for OSCC patients [56]. TMPO‐AS1 
regulates the proliferation and migration of triple‐nega-
tive breast cancer cells by modulating transforming 
growth factor‐β and E2F signaling pathways [57]. More-
over, TMPO-AS1 has the potential to enhance LCN2 
transcriptional activity by binding to transcription fac-
tor E2F6, thus stimulating ovarian cancer progression 
[58]. Feng et al. revealed that AC116914.2 is significantly 
related to the expression of PD-L1 in primary head and 
neck squamous cell carcinoma [59]. Cheng et  al. stated 
that LINC0​1063 is a risk-related autophagy-related 
lncRNA with a poor prognosis in colorectal cancer [60], 
which was confirmed again in the study of Zhou et  al. 
[61]. Ye et  al. reported that AC004​687.1  is significantly 
related to recurrence-free survival of hepatocellular car-
cinoma patients [62]. It was shown that RUSC1-AS1 

https://www.ncbi.nlm.nih.gov/gene/101929769
https://www.ncbi.nlm.nih.gov/nuccore/117414206/
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correlated with the prognosis of various cancers [63–65]. 
For instance, it activates NOTCH signaling via the hsa-
miR-7-5p/NOTCH3 axis, promoting the proliferation 
and reducing the apoptosis of HCC cells [66]. Moreover, 
RUSC1-AS1 promotes the aggressiveness of cervical can-
cer in  vitro and in  vivo by upregulating miR-744-Bcl-2 
axis output [67]. De Santiago et  al. showed that LINC0​
0944 is in response to ADAR1 up- and downregulation 
in breast cancer cells, and the low expression of LINC0​

0944  is correlated to poor prognosis in breast cancer 
patients [68]. MIR9-3HG was identified as a key lncRNA 
with diagnostic and prognostic value for HNSCC [69] 
and liver hepatocellular carcinoma [70]. LncRNA 
HOXC-AS1 promotes nasopharyngeal carcinoma pro-
gression by sponging miR-4651 to upregulate FOXO6 
[71]. Deng et  al. identified signature lncRNAs that 
could serve as predictors of the OS rate of hepatocellu-
lar carcinoma [72]. PTOV1-AS2 was used to construct a 

Fig. 9  Validation of abnormal expression of modeled genes in HNSCC cells. A AC098487.1. B MIR924HG. C LINC00944. D TMPO-AS1. E RUSC1-AS1. 
F LINC00205. G SNHG25. H AL354733.3. I PTOV1-AS2. J KDM4A-AS1. K C5orf66-AS1. L HOXC-AS. M AL390719.2. N AL133243.2

https://www.ncbi.nlm.nih.gov/gene/387895
https://www.ncbi.nlm.nih.gov/gene/387895
https://www.ncbi.nlm.nih.gov/gene/387895
https://www.ncbi.nlm.nih.gov/gene/387895
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tp53-associated nomogram to predict the OS in patients 
with pancreatic cancer [73]. High expression levels of 
the LINC0​0205 correlate with a better OS in pancreatic 
cancer [74]. The study of Yang et al. revealed that OS was 
significantly shortened in the SNHG25 high expression 
group and significantly upregulated in clear cell renal cell 
carcinoma (ccRCC) tissues [75]. Another study identi-
fied AL360181.2 and AC008735.2 as potential prognostic 
markers to construct a model for predicting the progno-
sis of ccRCC patients [76].

This study showed a significant correlation between the 
patient’s risk score and prognosis, with different survival 
probabilities observed between different risk subgroups. 
Furthermore, the clinical stratification analysis showed 
that risk score still maintained the ability to distinguish the 
prognosis of patients with high- and low-risk across dif-
ferent subgroups. These all highlighted the accuracy and 
optimality of the predictive ability of the prognostic model.

We analyzed 230 differential genes between high-
risk and low-risk populations. We discovered that the 
enriched molecular functions were related to immunity, 
and immune-related functions were also observed in 
the enriched cellular components and molecular func-
tions. This indicated a close relationship of our model 
with immunity. Therefore, we further explored the rela-
tionship between tumor immunity and our risk model 
from the perspective of the immune microenviron-
ment, including immune infiltrating cells and immune 
function. Immune infiltrating cells in tumors played 
an essential role in the occurrence and development 
of tumors, ultimately impacting patient prognosis [77]. 
Therefore, understanding tumor immune infiltrating 
cells could explore the prognosis of tumor patients and 
the new direction of HNSCC treatment in the future. 
We observed that B cell, T cell CD8+, myeloid den-
dritic cell, B cell memory, B cell plasma, T cell gamma 
delta, Tfh cell, Treg cell, mast cell activated, and NK 
cell activated negatively correlated with the risk score, 
while mast cell resting and eosinophil were positively 
correlated. Even further, the significant differences in 
cell content between high- and low-risk groups sup-
ported the credibility of the results. B cells played an 
important role in anti-tumor immunity. The presence 
of NK cells and NK T cells in most solid tumors often 
meant a good prognosis [78].

In addition, the scores of CCR, APC co-stimulation 
[79], type II IFN response [80], checkpoint, cytolytic 
activity, HLA [81], inflammation-promoting, T cell co-
stimulation, and T cell co-inhibition were observed to be 
negatively correlated with risk score (p < 0.05). Among 
them, higher scores of checkpoint, cytolytic activity, 
HLA, inflammation-promoting, T cell co-stimulation, 
and type II IFN response were observed in the low-risk 

group (p < 0.05). CCR 5 could recruit MDSC to tumors 
closely related to tumor immunity [82]. Type II IFN-γ has 
the potential to induce tumor cell apoptosis and regulate 
cancer immune activity [80]. Previous studies have dem-
onstrated that primary colorectal cancer and correspond-
ing metastases usually exhibit downregulation or loss of 
HLA-I expression [81]. Tumor may drive the immune 
escape by changes in HLA expression (or by other 
means) [83], which might be developed into auxiliary 
tumor markers in the future. These conclusions implied 
that a multitude of immune infiltrating cells in the low-
risk group may participate in the anti-HNSCC response 
through a series of immune functions, ultimately leading 
to improved patient prognoses.

Among the mutations in HNSCC, TP53 mutation was 
found to be the most common mutation in both high-risk 
and low-risk groups. It was well-established that the num-
ber of p53-regulated lncRNA increased rapidly, indicating 
their widespread involvement downstream of p53 activa-
tion [84]. Transcription factor p53 was a most prominent 
human tumor suppressor that played an essential role in 
cellular responses to DNA damage stimuli [85]. As antici-
pated, patients in the TP53 mutation group had higher 
risk scores and worse prognoses. Moreover, we also found 
that the contents of T cell CD8, T cell CD4 memory acti-
vation, Tfh cell, Treg cell, macrophage M1, mast cell rest, 
and mast cell activation were significantly lower in the 
TP53 mutation group. Conversely, there was a signifi-
cant increase in the contents of T cell CD4 memory rest, 
macrophage M0, and dendritic cell rest within this same 
group. In head and neck cancers, the presence of TP53 
mutations was associated with lower estimates of vari-
ous immune infiltrating cells, such as T, B, and NK cells 
[86]. Increased levels of M0 macrophages were associ-
ated with poor clinical outcomes in lung adenocarcinoma 
[87]. Furthermore, relevant studies have shown that M0 
macrophages promoted malignant progression and were 
affected by tumor development [87].

In addition, we found that the expression of PDL1 
(CD274) decreased significantly in the TP53 mutation 
group, which may lead to an increase in the tumor and 
cancer stem cell phenotype in cholangiocarcinoma. At 
the same time, it was found that low CD274 had high 
tumor initiation potential [88]. At present, the PD-L1 sig-
nal contributes to human cancer immune escape, thereby 
blocking PD-L1 has been applied to clinical cancer treat-
ment [89, 90]. The significant efficacy of PD-L1 blockers 
in cancer immunotherapy was expected to control can-
cer by regulating the expression of PD-L1 [91, 92], which 
has been shown to have a potential predictive effect in 
melanoma, non-small-cell lung cancer, renal cell car-
cinoma, prostate cancer, or colorectal cancer [93, 94]. 
These results suggested that in HNSCC, TP53 mutation 

https://www.ncbi.nlm.nih.gov/gene/642852
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may promote the progress of HNSCC by suppressing 
these immune cells and inhibiting anti-tumor immunity, 
ultimately leading to a poor prognosis. Furthermore, in 
HNSCC, patients with TP53 mutations may benefit less 
from PD-1 treatment. Nowadays, immunotherapy is an 
emerging strategy for anti-tumor therapy. Therefore, our 
study investigated the relationship between immune-
related genes and the prognosis model. We found that 
the expression of CD44 and CD276 had a significantly 
positive correlation with a risk score. As a CSC marker 
of HNSCC, CD44 participates in the DNA damage 
response of G2/M phase arrest. Overexpression of CD44 
provided relative protection for HNSCC cells against cell 
death response [95]. CD276, a member of the B7 fam-
ily, was considered a factor that regulated antigen-spe-
cific T cell immune response through costimulatory and 
co-inhibitory receptors. The expression of CD276 was 
negatively correlated with the number of tumor-infiltrat-
ing CD8 + T cells, and the upregulated expression was 
related to the poor prognosis in esophageal cancer [96, 
97]. In our study, patients in the high-risk group with 
more CD44 and CD276 expression exhibited a worse 
prognosis, which was consistent with the conclusions of 
these related studies.

More and more evidence showed that m6A RNA meth-
ylation played a crucial role in tumorigenesis. m6A modi-
fication of some genes may result in changes in mRNA 
behavior and expression, thus accelerating tumor devel-
opment, whereas the lack of m6A modification of other 
genes might still lead to tumor progression [98]. We 
studied the relationship between m6A-related genes and 
prognostic models, from which the expression level of 
HNRNPC was positively correlated with the risk score. 
Overexpression of HNRNPC was found in the central 
regulators of colon rectum cancer cells and cancer pro-
gression-related genes [99]. The expression of HNRNPC 
might be related to poor prognosis, similar to our find-
ings, providing valuable insights into the study m6A-
related genes in HNSCC.

Our study observed that IPS-CTLA4 and IPS-PD1 
+ CTLA4 were negatively correlated with a risk score. 
Some experiments showed that in HNSCC, the scores 
of IPS with CTLA4 blocker, IPS with CTLA4, and PD1/
PDL1/PdL2 blocker in the low-risk group were signifi-
cantly higher than those in the high-risk group, which 
was consistent with our experimental results [100]. This 
meant that our prognostic model had a certain predictive 
value for the efficacy of patients receiving correspond-
ing immunotherapy. Following calculation, we found that 
the IC50 of methotrexate was positively correlated with 
the risk score, while the IC50 of doxorubicin and doc-
etaxel was negatively correlated with the risk score. From 
this, our prognostic model possesses a certain guiding 

significance for the use of chemotherapeutic drugs. Nom-
ogram could provide personalized prognostic assessment 
for both surgeons and patients, serving as a reference for 
treatment planning [101]. The Nomogram drawn accord-
ing to the relevant data from the training samples had an 
excellent ability to predict survival, which provided a new 
insight into the prognosis of HNSCC.

It is worth acknowledging that our research had certain 
shortcomings and limitations. Firstly, due to the lack of 
data sets containing complete lncRNA and mRNA tran-
scription data in other shared databases, we only relied 
on a distinct data set from TCGA to build and validate 
our model, which may lead to randomness in the results. 
The lack of an external validation set posed a challenge 
to the reliability of model performance. To compensate 
for this limitation, three data sets obtained by randomly 
splitting the TCGA data set were used to thoroughly 
verify the model’s performance. In addition, it is note-
worthy that the limited number of normal samples also 
poses challenges to the accuracy of differential analysis 
results. Furthermore, due to the large number of lncR-
NAs in the model and limited experimental conditions, it 
was challenging for us to perform qRT-PCR to verify the 
differential expression of these lncRNAs. However, we 
obtained many valuable conclusions through multi-per-
spective analysis, regarding both clinical application and 
the underlying mechanism of HNSCC progress. Never-
theless, these conclusions need to be further verified in 
subsequent experimental studies.

Conclusions
The prognosis model included a total of 20 PR-DE-irl-
ncRNAs pairs. Various methods have verified that the 
risk score calculated from 20 pairs of PR-DE-irlncRNAs 
has an excellent prognostic capability to predict the prog-
nosis of patients with HNSCC. The prognostic model 
also performs well in the clinical risk classification and 
treatment guidance of HNSCC patients.
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