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Abstract 

Background  5-Methylcytosine (m5C) methylation is recognized as an mRNA modification that participates in bio-
logical progression by regulating related lncRNAs. In this research, we explored the relationship between m5C-related 
lncRNAs (mrlncRNAs) and head and neck squamous cell carcinoma (HNSCC) to establish a predictive model.

Methods  RNA sequencing and related information were obtained from the TCGA database, and patients were 
divided into two sets to establish and verify the risk model while identifying prognostic mrlncRNAs. Areas under the 
ROC curves were assessed to evaluate the predictive effectiveness, and a predictive nomogram was constructed for 
further prediction. Subsequently, the tumor mutation burden (TMB), stemness, functional enrichment analysis, tumor 
microenvironment, and immunotherapeutic and chemotherapeutic responses were also assessed based on this 
novel risk model. Moreover, patients were regrouped into subtypes according to the expression of model mrlncRNAs.

Results  Assessed by the predictive risk model, patients were distinguished into the low-MLRS and high-MLRS groups, 
showing satisfactory predictive effects with AUCs of 0.673, 0.712, and 0.681 for the ROCs, respectively. Patients in the 
low-MLRS groups exhibited better survival status, lower mutated frequency, and lower stemness but were more sensi-
tive to immunotherapeutic response, whereas the high-MLRS group appeared to have higher sensitivity to chemo-
therapy. Subsequently, patients were regrouped into two clusters: cluster 1 displayed immunosuppressive status, but 
cluster 2 behaved as a hot tumor with a better immunotherapeutic response.

Conclusions  Referring to the above results, we established a m5C-related lncRNA model to evaluate the prognosis, 
TME, TMB, and clinical treatments for HNSCC patients. This novel assessment system is able to precisely predict the 
patients’ prognosis and identify hot and cold tumor subtypes clearly for HNSCC patients, providing ideas for clinical 
treatment.
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Background
Head and neck squamous cell carcinoma (HNSCC), as 
the most recent report, appears to be an increasingly 
diagnosed sample of 890,000 per year and threatens 
human life (450,000 dead cases per year) [1, 2]. Early 
HNSCCs can be resected by appropriate surgery with 
postoperative radiotherapy, whereas when the tumor 
progresses to an advanced stage, the 5-year prognosis 
is extremely poor and the alive percentage is lower than 
50% [3–5]. For patients with HNSCC, a prediction of 
prognosis is necessary to guide clinical treatment [5, 6]. 
Recently, immunotherapy has presented cheerful results 
in improving living conditions and prolonging the over-
all survival of tumor patients [7]. Among them, immune 
checkpoint inhibitor (ICI) therapy is used widely and 
commonly in the management of tumors by activating 
patients’ own immune defense system [8, 9]. However, 
few patients can gain benefits from immunotherapy 
due to immune escape and the complex tumor immune 
microenvironment (TIME) [10, 11]. For HNSCC patients, 
ICI therapy promotes potential therapeutic prospects 
and the possibility of improving prognosis; nevertheless, 
the individual TIME for each patient requires systematic 
and accurate evaluations to formulate the immunothera-
peutic schedule. Therefore, it is also important and cru-
cial to explore and develop a reliable predictive signature 
to assess the TIME for patients [5, 6].

5-Methylcytosine (m5C) methylation was considered 
an mRNA modification approach first reported in 1925 
[12–14]. As recognized by previous studies, this RNA 
modification is also regulated by writers, readers, and 
erasers and plays an important role in biological pro-
gression by influencing RNA stability, transcription effi-
ciency, and localization [15–17]. Reportedly, m5C can 
affect tumor progression, prognosis, and TIME as well as 
resistance to immunotherapy and chemotherapy [15–18]. 
DNMT1, as investigated by Zhang et al., could strengthen 
and increase the sensitivity of radiotherapeutic effects for 
HPV-positive HNSCC patients [19]. Additionally, com-
pared with normal samples, NSUN2 is more enriched 
in tumor lesions and can significantly influence the cell 
cycle [20]. Similarly, long non-coding RNAs (lncRNAs) 
are crucial in affecting tumor progression, invasion and 
metastasis, and the TIME [3, 21]. Therefore, this kind of 
lncRNA is also considered a promising biomarker and 
potential target for tumor diagnosis and may provide a 
novel strategy to guide individualized precise treatment 
for tumor patients. Increasing evidence-based studies 
have determined that m5C can regulate related lncRNAs 
to participate and influence biological processes [15–17, 
22]. Previous studies have shown that NSUN2 can alter 
gene and lncRNA expression as well as enhance pro-
tein synthesis and translation [14, 23]. It is recruited by 

the lncRNA forkhead box protein C2 (FOXC2)-AS1 and 
upregulated to lead a shorter survival time in HNSCC 
patients [15, 24]. Similarly, a significantly upregulated 
expression of NSUN5 was also found in tumor samples 
[12]; and the X-inactive specific transcript of lncRNAs 
can be regulated by m5C genes [25, 26]. It is strongly rec-
ommended that m5C-related lncRNAs (mrlncRNAs) be 
regarded as potential biomarkers to predict prognosis 
and immune infiltration. However, more evidence-based 
studies are needed to clarify the detailed mechanism and 
relationship among m5C, lncRNAs, and HNSCC.

Hence, in this study, we used bioinformatics analysis 
to establish a m5C-related lncRNA signature to predict 
prognosis and immune infiltration and identify tumor 
subtypes in HNSCC patients.

Methods
Obtaining the RNA‑seq matrix and mrlncRNAs
Data about the RNA sequencing matrix of HNSCC was 
downloaded by screening The Cancer Genome Atlas 
(TCGA) database as fragments per kilobase million 
(FPKM) format, including 504 tumor tissue and 44 nor-
mally paracancerous tissue. Detailed data about clin-
icopathologic features and tumor-mutated frequency 
for each HNSCC patients were also extracted from the 
TCGA-HNSC cohort of the TCGA database. Subse-
quently, HNSCC patients from the entire cohort were 
equally and randomly separated into two groups (train 
set and test set) at a ratio of 1:1 for further model estab-
lishment and data analysis.

Additionally, according to previous studies [12–26], we 
obtained 15 m5C genes to identify their related lncRNAs, 
including 11 writers of NOP2, NSUN2, NSUN3, NSUN4, 
NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1, DNMT3A, 
and DNMT3B, 2 readers of ALYREF and YBX1 and 2 
erasers of TET2 and TET3. Furthermore, a correlation 
analysis of Pearson test was performed to identify rel-
evant mrlncRNAs with the criteria of |Pearson R coeffi-
cient|> 0.04 and p value < 0.001 [3].

Construction of a prognostic model and validation 
of predictive effects
Considering the expression of mrlncRNAs and over-
all survival (OS) data, univariate Cox (uni-Cox) hazard 
regression was performed to identify the survival-related 
mrlncRNAs based on the standard of a p value less than 
0.05. Furthermore, the least absolute shrinkage and 
selection operator (LASSO) regression analysis was per-
formed with tenfold cross-validation and 1000 cycles to 
avoid overfitting. The expression correlation between 
m5C genes and model mrlncRNAs was calculated by 
the Pearson correlation test and reflected in the heat-
map with the application of the “limma” and “pheatmap” 
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packages. Subsequently, the coefficient of each eligible 
lncRNA was calculated by multivariate Cox (multi-Cox) 
regression analysis, and patients in both the train and test 
cohorts were assessed and calculated with the following 
formula: m5C-related lncRNA risk score (MLRS) = ∑ 
coef (mrlncRNA)i × exp (mrlncRNA)i, where coef means 
coefficient and exp means expression. Based on different 
MLRSs, patients were then clarified as two risk groups 
(low-MLRS and high-MLRS groups) concerning the 
median of MLRSs. The expression of model mrlncRNAs 
between the normal and HNSCC samples was compared, 
and the survival analysis was displayed referring to the 
best optional cutoff value. Subsequently, Kaplan‒Meier 
(K-M) analysis was conducted to compare the survival 
differences between the low-MLRS and high-MLRS 
groups in the test, training, and entire sets, including 
OS, progression-free survival (PFS), disease-free sur-
vival (DFS), and disease-specific survival (DSS). The risk 
score and expression of prognostic model mrlncRNAs 
were calculated and are shown in the plots. Furthermore, 
areas under the curves (AUCs) of survival receiver oper-
ating characteristic (ROC) curves about 1-, 3-, and 5-year 
survival status for train, test, and entire sets were calcu-
lated and compared to assess the predictive effects of the 
MLRS assessing system.

In addition, while performing uni- and multi-Cox sur-
vival analyses to investigate and select the independent 
predictive factors (p value less than 0.05), a survival nom-
ogram for predicting prognostic status was constructed 
based on the MLRS system and the above independent 
clinicopathologic indicators. A calibration plot was used 
to estimate the consistency between actual observations 
and nomogram predictions, and concordance index 
(C-index) was also applied to test and compared the reli-
ability of the prediction.

Distribution of MLRSs in different clinicopathological 
characteristics
The distribution of MLRSs in different clinicopathologi-
cal features was compared via the Wilcoxon test. Subse-
quently, patients were divided into different subgroups 
to compare the difference of OS between the low-MLRS 
and high-MLRS groups in each subgroup by K-M sur-
vival analysis.

Biological function analysis
Based on the LncSEA database, we pooled the above 8 
model mrlncRNA to investigate their potential influence 
in tumor survival and function with the p value less than 
0.05 [27]. To further explore the related function of the 
risk models, the differentially expressed genes (DEGs) 
between the two MLRS groups were identified according 
to the standard of |logFC|> 0.585 and false discovery rate 

(FDR) less than 0.05. Protein‒protein interaction (PPI) 
network among the DEGs was calculated by the STRING 
database and subsequently re-visualized via Cytoscape 
version 3.6.2 software. In addition, the top 10 hub 
DEGs were selected with the application of cytoHubba. 
Furthermore, to explore the potential biological func-
tions about these DEGs, gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes pathway (KEGG) 
enrichment analyses were conducted via the “clusterPro-
filer” and “bioconductor” R packages. Furthermore, gene 
set enrichment analysis (GSEA) was performed to inves-
tigate the pathways enriched in the MLRS groups via 
the GSEA software with the assistance of a related gene 
set. The eligible pathways in the two MLRS groups were 
selected while the FDR was less than 0.05.

Exploration of the relationship of MLRS, tumor mutation 
burden (TMB), and stemness
The relationship between MLRS and TMB was explored 
with the application of the “limma” and “matftool” R 
packages. The Wilcoxon signed-rank test was used to 
compare the mutation frequencies of the top 20 genes in 
the low-MLRS and high-MLRS groups, and the survival 
analysis referring to TMB plus MLRS was also evaluated. 
In addition, the correlation between MLRS and stem cell-
like features, including DNA stem score (DNAss) and 
RNA stem score (RNAss), was conducted by the use of 
the Spearman test.

Assessment of the tumor immune infiltrated 
microenvironment and clinical treatment
To further assess the TIME, immune-related analy-
ses, including immune cell infiltration, immune func-
tion activation, TME scores, and expression of immune 
checkpoint-related genes, were conducted and compared 
between the two MLRS groups. Across them, immune 
cell infiltration status was assessed by multiple algorithms 
obtained from the TCGA-pancancer dataset. Correlation 
analysis was conducted based on Spearman’s test, and the 
results are summarized in the bubble plot. In addition, 
immune-related analysis (including cells and functions) 
was also assessed by using the technology of ssGSEA. 
Furthermore, TME scores, consisting of immune scores, 
stromal scores, ESTIMATE scores, and tumor purity, 
were calculated for each sample in the TCGA-HNSC 
cohort with the “estimate” R package.

The expression of immune checkpoint genes was com-
pared between the low-MLRS and high-MLRS groups 
to predict the potential immunotherapeutic response. 
Additionally, the differences in immunotherapy between 
the two MLRS groups were predicted and compared con-
cerning the immunophenoscore (IPS) from the TCIA 
database. In addition, the drug sensitivity of HNSCC 
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patients to five commonly used chemotherapeutic agents 
was evaluated according to the half-maximum inhibitory 
concentration (IC50) values.

Identification of tumor subtypes based on the model 
mrlncRNAs
To further identify the tumor subtypes and assess the 
TIME, patients of the TCGA-HNSC were then grouped 
into different clusters with the application of the “Con-
sensususClusterPlus” R package. Principal component 
analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) analysis were used to assess the dis-
tribution about clusters, and survival comparison TIME 
analysis and immunotherapy prediction were also 
investigated.

Results
Obtaining the survival‑related mrlncRNAs 
and constructing the risk model
Referring to the results of the Pearson correlation test, 
865 mrlncRNAs were identified with the criteria of |Pear-
son R|> 0.04 and p value < 0.001 (Fig.  1A–C). Among 
them, 24 mrlncRNAs were considered survival-related 
biomarkers in the HNSCC cohort, as shown in the forest 

plots (Fig.  1D). Subsequently, after selecting the eight 
model mrlncRNAs according to LASSO regression anal-
ysis (Fig.  1E, F), the MLRS risk model was constructed 
using the following formula: MRLS = AC090236.2 × 1.
47873598876185—AC018445.5 × 1.80937632353846—
A C 0 0 5 6 0 6 . 2  ×  1 . 0 5 3 0 3 2 0 7 7 1 5 2 7  +  S L C 7 A 1 1 -
A S 1   ×   0 . 8 2 5 9 0 8 1 3 7 6 7 8 0 1 1   +   A L M S 1 -
IT1 × 0.501505889430741—MIR9-3HG ×​ ​0.2​648​191​
378​56731 +  AC006064.3 ×  0.540914230120973—
AC008115.3 × 0.396968136166697. The model mrlncR-
NAs were expressed differently between the normal and 
HNSCC samples. In addition, the high expression of 
AC018445.5, AC005606.2, MIR9-3HG, and AC008115.3 
displayed better prognosis, whereas the increasing 
expression of the remaining model mrlncRNAs short-
ened the OS for patients. The correlation between the 
model lncRNAs and m5C-related genes is shown in 
Fig. 1G, and the relationship and distribution of MLRS, 
OS, and signature mrlncRNAs in the train, test, and 
entire sets are reflected in Fig. 2A–F as well as the K-M 
survival analysis of OS and ROC curves (Fig. 2G–I). The 
AUC values for the prognostic ROC curve of the MLRS 
system in the entire set were 0.673, 0.712, and 0.681, 
respectively, which were much higher than those of the 

Fig. 1  Establishing a prognostic risk model. A Sankey diagram to reflect the relationship between m5C genes and related lncRNAs. B Heatmap 
about differential expression of mrlncRNAs between tumor and normal samples. C Volcano diagram about differential expression of mrlncRNAs. 
D Hazard forest to identify the prognostic mrlncRNAs. E LASSO diagram for mrLncRNAs. F Cross-validation curve for prognostic mrLncRNAs. G 
Correlation between the model lncRNAs and m5C genes
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other clinical features (Fig.  2I). The comparison of PFS, 
DFS, and DSS between the low-MLRS and high-MLRS 
groups in the entire cohort was compared, which indi-
cated that patients in the low-MLRS group had longer 
PFS and DSS but similar DFS to those in the high-MLRS 
group (Fig. 2J–L).

Moreover, when comparing the MLRSs in different 
clinicopathological features, there were significant differ-
ences among different T or N stages (Fig. 3A, B). In addi-
tion, as indicated by the subgroup survival analysis, the 
low-MLRS groups always presented a better prognosis in 
different clinical subtypes (Fig. 3C).

Construction and validation of a predictive nomogram
As indicated by the uni-Cox and multi-Cox regression 
analyses, the clinicopathological characteristics of A and 
B were considered independent indicators, as well as 

MLRSs, with both statistical differences (Fig. 4A, B). Sub-
sequently, the predictive nomogram was established for 
survival prediction, as shown in Fig. 4C. The calibration 
and C-index plots suggested high consistency and exhib-
ited satisfactory predictive effects for HNSCC patients 
(Fig. 4D, E).

Functional enrichment analysis
Referring to the results of the LncSEA database, eight 
kinds of tumors (including HNSCC) were identified cor-
related with these mrlncRNAs in tumor survival. Addi-
tionally, in the calculating module of experimentally 
validated function, these mrlncRNAs were strongly asso-
ciated with cancer progression and cell migration (Suppl. 
Fig. 1). In addition, it was also found that SLC7A11-AS1 
was involved in three kinds of competing endogenous 
RNAs, which was related to HNSCC (Suppl. Table 1).

Fig. 2  Verification of the risk model. A–C K-M survival analysis to compare the OS between the low-MLRS and high-MLRS groups in the train set 
(A), test set (B), and entire (C) set, respectively. D–F Exhibition of risk scores, survival time and status, and distributing heatmap of model mrlncRNA 
in train (D), test (E), and entire (F) sets; G–I 1-, 3- and 5-year ROCs for the train set (G), test set (H), and entire (I) set, respectively. Comparison of PFS 
(J), DFS (K) and DSS (L) between the two MLRS groups
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Fig. 3  Distribution of MLRS in clinicopathological features and subtype survival analysis. A Heatmap about MLRS distributed in clinicopathological 
features. B Boxplots about MLRS distributed in clinicopathological features. C Subtype survival analysis in different clinicopathological features

Fig. 4  Identifying the independent indicators and establishing a nomogram. A Forest plot of the uni-Cox regression analysis. B Forest plot of the 
multi-Cox regression analysis. C Nomogram to predict the 1-, 3-, and 5-year prognosis. D Calibration curves plot. E C-index to evaluate the predictive 
effects of a nomogram
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According to the selection criteria, 465 DEGs 
between the two MLRS groups were identified, and 
the PPI network was re-visualized by Cytoscape soft-
ware. Blue circles suggested DEGs upregulated in the 
low-MLRS group, whereas pink circles were more 
highly expressed in the high-MLRS group (Fig. 5A). A 
hub gene network was subsequently established, show-
ing the 10 genes with the topmost interactions with 
other DEGs, including CD19, CD27, CD79B, CD79A, 
ZAP70, CD40LG, CD3D, MS4A1, CR2, and CD22 
(Fig.  5B). The GO analysis indicated that these DEGs 
were mostly enriched in biological processes, includ-
ing immunoglobulin production, regulation of B cell 
activation, B cell receptor signaling pathway, and other 
immune-related biological progress (Fig.  5C). KEGG 
determined that these DEGs were mostly enriched in 
the signaling pathways of cytokine‒cytokine receptor 
interactions, primary immunodeficiency, and other 
immune-related signaling pathways (Fig.  5D). Simi-
larly, referring to the criteria of FDR < 0.05, GSEA 
also determined that the low-MLRS group exhibited 
enrichment of the immunotherapeutic response; nev-
ertheless, the high-MLRS group was more activated in 
galactose metabolism and the pentose phosphate path-
way (Fig. 5E).

Exploring the correlation of the MLRS with TMB 
and stemness
The distribution of mutated frequency of the topmost 
20 mutated genes from the TCGA-HNSC cohort was 
reflected in the waterfall plots (Fig.  6A, B), which indi-
cated no significant differences between the low-MLRS 
and high-MLRS groups (Fig. 6C). Although there was no 
statistical association between MLRS and TMB, when 
combining the TMB and MLRS to conduct the survival 
analysis, those with high TMB and high MRLS dis-
played the worst prognosis because both increasing TMB 
and MLRS can enhance the risks for HNSCC patients 
(Fig.  6D). Moreover, Spearman analysis indicated that 
MLRS was positively associated with RNAss, whereas 
there were no statistical differences of correlation test 
between the MLRS and DNAss (Fig. 6E–F).

Assessment of the TIME
According to different analysis platforms, the MLRS was 
negatively associated with most immune cells, including 
B cells and CD8 + T cells. However, there was a positive 
association of MLRS with neutrophils and eosinophils 
infiltration (Fig. 7A). Similar results were also supported 
by the ssGSEA, in which patients in the low-MLRS 
group exhibited more activated CD4 + and CD8 + T cell 

Fig. 5  Functional enrichment analysis. A Protein–protein interaction network of DEGs between the low- and high-MLRS groups, the purple cycles 
indicate genes upregulated in the low-MLRS group. B Hub gene network of DEGs. C GO enrichment analysis. D KEGG signaling pathway analysis. E 
GSEA enrichment analysis
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enrichment. Moreover, for those in the low-MLRS group, 
HNSCC patients exhibited more activation of immune-
related functions, such as APC coinhibition, APC costim-
ulation, and CCR (Fig. 7B). Furthermore, for TME scores, 
patients in the low-MLRS group had higher immune 
scores and ESTIMATE scores and lower tumor purity 
than those in the high-MLRS group; nevertheless, for 
stromal scores, the comparison exhibited no significant 
differences (Fig. 7C).

Immunotherapy and chemotherapy
To further assess and predict the immunotherapeutic 
response of patients to ICI therapy, the expression of ICI-
related genes was compared between the low-MLRS and 
high-MLRS groups. As indicated by Fig. 7D, patients with 
lower MLRSs showed higher expression of most ICI-
related genes, including CTLA4 and PDCD1. The com-
parison of IPS based on the TCIA database also indicated 
that the low-MLRS groups performed higher IPS while 
being treated with PD-1 or CTLA4 inhibitors (Fig. 7E).

Similarly, the potential drug sensitivity to five common 
chemotherapeutic agents between the two MLRS groups 

were also assessed and compared. As reflected by the 
boxplots, patients in the high-MLRS groups had lower 
IC50 values for cisplatin and docetaxel and were recog-
nized to exhibit higher sensitivity to the chemotherapy of 
the two drugs. However, the IC50 values of the remain-
ing three drugs behaved similarly, with p values > 0.05 
(Fig. 7F, G).

Identifying the hot and cold tumor subtypes for HNSCC
Referring to the expression of eight model mrlncRNAs, 
patients were discriminated as two different tumor 
subtypes, and the Sankey diagram suggested that most 
of the HNSCC patients in the high-MLRS group were 
identified and distributed into cluster 2 (Fig.  8A). The 
PCA and t-SNE analysis indicated that patients of the 
TCGA-HNSC cohort can be distinguished clearly as 
two different clusters by these eight model mrlncRNAs 
(Fig.  8B). As recommended by the survival compari-
sons, patients in cluster 2 behaved worse OS, PFS, and 
DSS than the cluster 1; nevertheless, these two clusters 
exhibited similar DFS according to the comparison (p 
value > 0.05) (Fig.  8C). The immune infiltration-related 

Fig. 6  Correlation of MLRS with TMB and stemness. A Waterfall plot about the topmost 20 mutated genes in the low-MLRS group. B Waterfall plot 
about the topmost 20 mutated genes in the high-MLRS group. C Comparison of TMB between the two MLRS groups. D Survival analysis combing 
with MLRS and TMB. E Spearman correlation analysis of MLRSs and stem cell RNA scores. F Correlation between MLRSs and DNA scores
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analysis determined that cluster 1 displayed an immu-
nosuppressive status with less immune cell infiltra-
tion, less immune function activation, lower stromal 
scores, and lower ESTIMATE scores but higher tumor 
purity (Fig.  8D–F). In addition, cluster 2 appeared 
much higher expression of ICI-related genes (CD274 
and PDCD1LG2), indicating that cluster 2 may be more 

sensitive to PD-1 inhibitors (Fig.  8G). Similar results 
were also obtained by comparing IPS; cluster 2 had a 
higher IPS when treated with either PD-1 or CTLA4 
antibodies (Fig.  8H). In addition, cluster 2 behaved 
higher sensitivity to the drugs of docetaxel and pacli-
taxel whereas cluster 1 exhibited better chemothera-
peutic response in methotrexate (Fig. 8I).

Fig. 7  Assessment of tumor immune microenvironment. A Immune cell infiltration status based on multiple platforms. B Immune cells infiltration 
and function activation based on ssGSEA methods. C TME scores according to estimate platform. D Comparative expression of ICI-related genes 
between the low- and high-MLRS groups. E Assessment of immunotherapeutic response about PD-1 and CTLA4 in the two groups. F Comparison 
of IC50 about five chemotherapeutic agents between the MLRS groups. G Correlation analysis of IC50 values and MLRSs for five drugs
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Discussion
Multiple studies have determined lncRNAs can be 
regulated by m5C-related to participate in the biologi-
cal process of tumors by regulating of RNA localization, 
stability, and transcription efficiency [28]. Referring to 
the summarized list reviewed by Cusenza et  al., a large 

number of lncRNAs have been verified as signatures 
modified by m5C in malignancies, especially for squa-
mous cell neoplasms [29]. For HNSCC patients, a reliable 
signature for prognostic prediction and immune infiltra-
tion assessment is necessary to develop an individual and 
precise treatment [3]. Based on the results of this study, 

Fig. 8  Identifying hot and cold tumor subtypes based on model mrlncRNAs. A Sankey diagram to reflect the relationship of MLRS groups, tumor 
subtypes, and survival status. B PCA and t-SNE analysis in clusters. C Survival analysis about OS, PFS, DSS, and DFS in clusters. D Heatmap about 
immune cell-infiltrated status in clusters. E Immune-infiltrated status based on ssGSEA. F TME scores in clusters. G Comparison of ICI-related gene 
expression in clusters. H Comparison of IPS in clusters. I Assessment of chemotherapy between the two clusters
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a novel MLRS system with eight prognostic mrlncRNAs 
was established in order to conduct a comprehensive 
evaluation. Among these model mrlncRNAs, lncRNA of 
ALMS1-IT1 can accelerate tumor malignant progression 
(e.g., lung adenocarcinoma) via AVL9-mediated acti-
vation of the cyclin-dependent kinase pathway [30]. In 
addition, as indicated by previous evidence-based analy-
sis, it was also identified as one of four lncRNAs for sur-
vival prediction of HNSCC [31]. As for SLC7A11-AS1, 
it can confer malignant progression by repressing miR-
4775 and TRAIP expression in lung cancer and reduce 
tumor growth via the ASK1-p38 MAPK/JNK pathway in 
gastric cancer [32–34]. Besides, this lncRNA is involved 
in the cisplatin resistance for gastric tumor with down-
regulated expression via the SLC7A11-AS1/xCT axis 
[35]; nevertheless, downregulation of SLC7A11-AS1 can 
significantly decrease the NRF2/SLC7A11 expression and 
inhibit the progression of colorectal cancer [36]. And as 
investigated by Yang et  al., these lncRNAs can promote 
chemoresistance by blocking SCFb−TRCP-mediated degra-
dation of NRF2 in pancreatic cancer [37]. While knocking 
down the MIR9-3HG, in cervical cancer, the proliferation 
of tumor cells will be inhibited and the apoptosis can be 
promoted via the EP300 [38]. Similarly, MIR9-3HG can 
promote carcinogenesis of squamous cell carcinoma by 
affecting LIMK1 mRNA and protein levels via sponging 
miR-138-5p and recruiting TAF15, and it was also con-
sidered a predictive biomarker in HNSCC via multiple 
machine learning studies and q-RT PCR [39–42]. Based 
on previous studies and the results from the LncSEA 
database, the model mrlncRNAs are considered specifi-
cally related to HNSCC and contribute important roles 
in tumors.

As indicated by our risk model, patients who were 
assessed with low MLRSs displayed better prognoses in 
OS, PFS, and DFS, which indicated that increasing MLRS 
may enhance the risk and shorten the survival time for 
patients. Similarly, as supported by the results of K-M 
survival analysis in different clinicopathological subtypes, 
HNSCC patients with lower MRLSs also showed a bet-
ter prognosis than these higher MLRS patients. The AUC 
values for the 1-, 3- and 5-year ROC curves for the MLRS 
model revealed much more reliable predictive effects 
than other clinicopathological characteristics and can be 
used to establish a predictive nomogram with the high-
est C-index. In addition, although there was no signifi-
cant statistical correlation between TMB and the MLRS 
groups, patients could be predicted precisely with differ-
ent prognostic states when TMB and MLRS were com-
bined. In addition, the increasing MLRS may reduce the 
RNAss based on the Spearman correlation analysis, sug-
gesting that the high-MLRS group has fewer stem-like 
cells. Previous studies have noted that stem-like cells are 

strongly associated with chemotherapy and are consid-
ered the main determinant of drug resistance [43, 44]. 
Therefore, this correlation analysis can explain the results 
regarding chemotherapeutic sensitivity that the higher 
MLRS patients exhibited a better chemotherapeutic 
response to chemotherapy agents.

Furthermore, as indicated by the functional enrichment 
analysis, the DEGs between the low-MLRS and high-
MLRS groups were associated with biological processes 
and pathways of the immune response. Similarly, GSEA 
also supported the results that low MLRS was enriched 
and associated with immune-related biological processes. 
In addition, the comparison of TIME, including immune 
cells, functions, and related scores, determined that 
those in the low-MLRS group revealed more sensitivity 
to immunotherapy. For patients with low MLRSs, much 
more CD8 + T cell infiltration promotes better cancer 
cell killing and immune tolerance disruption [45, 46]. 
This can be determined by the comparisons of TCIA that 
the low-MLRS exhibited higher IPSs when treated by 
the PD-1 inhibitors, and the low-MLRS exhibited higher 
expression of ICI-related genes (e.g., CD274).

In addition, while regrouping patients into novel tumor 
subtypes referring to the prognostic model mrlncRNAs, 
those in cluster 1 had a better prognosis but immuno-
suppressive status, which resulted in less immune cell 
infiltration and lower stromal scores. Patients in cluster 
2, as determined by the TCIA databases, were more sen-
sitive to immunotherapy and can be considered the hot 
tumor subtype [47, 48]. Therefore, while being diagnosed 
with HNSCC, our risk model can assess their risks and 
identify the tumor type clearly as well as provide detailed 
immunotherapeutic treatment for those considered hot 
tumors with a poor prognosis.

However, although our predictive model performed 
satisfactorily, there were still several limitations in our 
study. As a predictive model, there is a lack of external 
lncRNA cohorts to verify the predictive effects. Pro-
spective studies with experimental assays and clinical 
information are necessary and crucial for further explo-
ration and verification. Actually, we built a model based 
on m5C-related lncRNAs in TCGA-HNSC cohort and 
validated it internally based on random allocation, which 
enhanced the reliability of our results. In addition, we 
also investigated its predictive value in immune infiltra-
tion and immunotherapy based on various algorithms. 
The coinciding tendency proved our finding also serves 
as a treatment response indicator and indirectly demon-
strated the reliability of this predictive tool. Besides, we 
applied multiple methods to assess the biological func-
tions, TIME, and clinical therapy to laterally and exter-
nally test the prediction, and these results coincided and 
can be mutually corroborated. Hence, this mrlncRNA 
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risk model can be considered useful and reliable for prog-
nostic prediction.

Conclusions
Referring to the above results, we established a 
m5C-related lncRNA model to evaluate the prognosis, 
TME, TMB, and clinical treatments for HNSCC patients. 
This novel assessment system is able to precisely predict 
the patients’ prognosis and identify  hot and cold tumor 
subtypes clearly for HNSCC patients, providing ideas for 
clinical treatment.
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