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Abstract 

Background  Epigenetics is involved in various human diseases. Smoking is one of the most common environmental 
factors causing epigenetic changes. The DNA methylation changes and mechanisms after quitting smoking have 
yet to be defined. The present study examined the changes in DNA methylation levels before and after short-term 
smoking cessation and explored the potential mechanism.

Methods  Whole blood and clinical data were collected from 8 patients before and after short-term smoking cessa-
tion, DNA methylation was assessed, and differentially methylated sites were analyzed, followed by a comprehensive 
analysis of the differentially methylated sites with clinical data. GO/KEGG enrichment and protein–protein interaction 
(PPI) network analyses identified the hub genes. The differentially methylated sites between former and current smok-
ers in GSE50660 from the GEO database were detected by GEO2R. Then, a Venn analysis was carried out using the dif-
ferentially methylated sites. GO/KEGG enrichment analysis was performed on the genes corresponding to the com-
mon DNA methylation sites, the PPI network was constructed, and hub genes were predicted. The enriched genes 
associated with the cell cycle were selected, and the pan-cancer gene expression and clinical significance in lung 
cancer were analyzed based on the TCGA database.

Results  Most genes showed decreased DNA methylation levels after short-term smoking cessation; 694 upregulated 
methylation CpG sites and 3184 downregulated methylation CpG sites were identified. The DNA methylation levels 
were altered according to the clinical data (body weight, expiratory, and tobacco dependence score). Enrichment 
analysis, construction of the PPI network, and pan-cancer analysis suggested that smoking cessation may affect vari-
ous biological processes.

Conclusions  Smoking cessation leads to epigenetic changes, mainly decreased in the decline of most DNA methyla-
tion levels. Bioinformatics further identified the biologically relevant changes after short-term smoking cessation.
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Background
Smoking is a preventable risk factor for many diseases, 
including respiratory illness, cardiovascular diseases, 
and cancers. Tobacco inhalation is one of the leading 
risk factors for lung cancer [1]. Heavy smokers’ cumula-
tive lung cancer risk may be approximately 30% higher 
than never smokers [2]. The effect of smoking on cardio-
vascular disease cannot be ignored in adults or children 
[3]. The roles of smoking in disease may involve multiple 
molecular and cellular mechanisms; however, the spe-
cific mechanisms have not yet been investigated [4, 5].

Epigenetics refer to heritable changes that alter gene 
expression without modifying the DNA sequence. Many 
studies have focused on the impact of environmental and 
lifestyle factors on abnormal epigenetic status and disease, 
with smoking habits receiving significant attention [6, 7]. 
DNA methylation, with the addition of a methyl group at 
the 5’ position of cytosine in CpG dinucleotides, indicates 
an epigenetic modification, which regulates gene expres-
sion and protects genome integrity. Epigenetic changes are 
the hallmark of cancer [8] and are associated with obesity, 
diabetes mellitus, and others [9, 10]. Cigarette smoke is 
one of the most potent environmental modulators of DNA 
methylation, and several genome-wide association stud-
ies have identified the differentially methylated CpG sites 
(DMCpGs) related to smoking [11]. These sites are asso-
ciated with gene expression and may exert several roles in 
cellular, hematological, immune, cardiovascular, carcino-
genic, and other mechanisms and functions [12, 13].

The earlier smokers successfully quit smoking, the 
lower the mortality rate [14]. Regardless of age, quit-
ting smoking seems to reduce mortality at all ages [15]. 
DNA methylation is a reversible process for smok-
ers, and some smoking-induced differentially meth-
ylated CpG sites partially return to a never-smoker 
state due to smoking cessation [16–18]. The most 
relevant article described “long-term smoking ces-
sation” as > or = 6 months [19, 20]. Although some stud-
ies focus on long-term smoking cessation, few have 
assessed short-term cessation interventions.

In the present study, DNA methylation sequencing 
before and after short-term smoking cessation was per-
formed, and differentially methylated CpG sites and the 
corresponding genes were identified, then, assessed the 
correlation between changes in methylation and clini-
cal features. Finally, bioinformatics analysis was carried 
out to further explore the functions of these genes.

Methods
Inclusion criteria
All human studies were approved by the Henan Pro-
vincial People’s Hospital ethics committee. According 

to the Chinese Guidelines for Smoking Cessation (2015 
Edition), smoking cessation intervention was per-
formed with varenicline tartrate for smokers. Primary 
screening was conducted on smokers who visited the 
smoking cessation clinic of Henan Provincial People’s 
Hospital from August 2018 to December 2019. Pulmo-
nary function tests were conducted according to the 
patient’s wishes or the clinician’s evaluation. Whole 
blood and clinical data were collected separately before 
(pre-quitting group) and 3–6  months after smoking 
cessation intervention (post-quitting group). After the 
screening, 8 males were enrolled in this study.

DNA methylation assay
Whole blood samples from 8 subjects before and after 
smoking cessation intervention were collected to 
extract genomic DNA. The following DNA methyla-
tion analysis processes followed the Illumina Human 
850  K BeadChip instructions [21]. Genomic DNA 
was quantified on a spectrophotometer (CapitalBio 
MedLab, Beijing, China), adjusted to standard solu-
tion concentrations of 50  ng/μL and 20 μL, and then 
detected by 0.8% agarose gel electrophoresis as a 
10-kbp band without any degradation. A total amount 
of more than 5 μg can be used in chromatin immuno-
precipitation (ChIP) experiments. Sulfite conversion 
was carried out according to the optimization method 
of the Zymo EZ DNA Methylation kit officially recom-
mended by Illumina. Then 0.1 N NaOH was added to 
the sample to denature the DNA into single strands. 
After neutralization, the whole genome amplification 
reagent was added and incubated overnight at 37  °C. 
The amplified product was subjected to enzymatic 
hydrolysis to obtain fragmented DNA. Isopropanol 
was added, and DNA fragments were centrifuged 
at 4  °C. After the precipitated DNA was air-dried, a 
hybridization buffer (Illumina) was added to redissolve 
the precipitated DNA. The resuspended DNA sam-
ple was hybridized overnight with the prepared chip. 
The fragmented DNA was denatured and connected 
with 50 bases at the specific site in hybridization. All 
unhybridized or mismatched DNAs were removed. 
Dinitrophenol and biotin-labeled nucleotide substrates 
(A/T and C/G) in the extension base of the capture 
probe and only the probe with complementary bind-
ing to gDNA could be extended. Different fluorescent 
dyes were labeled A/T and C/G by staining. The corre-
sponding manifest file was downloaded, ChIP-seq was 
fitted into the scanner, the raw data were generated, 
the raw data were imported into R-package ChAMP 
software for analysis, and finally, the methylation level 
of each site for each sample was obtained.
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Identification of differentially methylated CpG sites 
and differentially methylated regions
Raw data were loaded into the R package ChAMP 
in the form of IDAT files. Individual CpG sites were 
obtained for each patient sample, quality control of 
the raw data was implemented, and normalization was 
carried out via BMIQ. Differential methylation analy-
sis was performed using R Limma3.32.10; when the 
P value was < 0.001, samples were divided into up- or 
downregulated methylation groups based on beta val-
ues of < 0 or > 0, respectively. Volcano plots were plot-
ted for the methylated sites using R software (version 
3.6.3) and the R package survival (version 3.3.3). The 
data were plotted as pie charts according to the distri-
bution of the CpG sites in CpG islands that were fur-
ther divided into CpG island/shore/shelf/open sea. A 
Circos diagram was generated to display the screened 
significantly different CpG site distribution over the 
genome, and clustering analysis was performed using 
Cluster 3.0. Gene Ontology (GO)/Kyoto Encyclope-
dia of Genes and Genomes (KEGG), protein–protein 
interaction (PPI) analysis and identification of hub 
genes were based on the genes corresponding to up- or 
downregulated methylation, respectively. GO/KEGG 
analyses were carried out using R (version 3.6.3) and 
the clusterProfiler package (version 3.14.3); PPI net-
works were constructed using STRING, and hub genes 
were identified via the CytoHubba plugin in Cytoscape 
(version 3.7.1).

Correlation between differential methylation and clinical 
data
Spearman’s correlation analysis identified the differential 
methylation from the paired data before and after smok-
ing cessation, with screening conditions of the absolute 
value of the correlation coefficient > 0.8 and P value < 0.05. 
The results are expressed in heatmaps. R (version 3.6.3) 
and the R package ggplot2 (version 3.3.3) were utilized 
for statistical analyses and visualization.

Identification of the same differentially methylated CpG 
sites in with GSE50660
The NCBI GEO database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/) was searched using “cigarette smok-
ing” and “DNA methylation” as search terms. After the 
screening, GSE50660 was identified for subsequent 
analysis. GSE50660 used Illumina Infinium Human-
Methylation450 BeadChip to measure the DNA meth-
ylation levels of the current, former, and never-smokers, 
while GEO2R was used for differentially expressed DNA 
methylation between former and current smokers. The 
screening of differentially methylated CpGs was carried 

out with a threshold of P value < 0.05. A Venn diagram 
was constructed to display these differentially methylated 
CpG sites of GSE50660 and the downregulated methyl-
ated CpG sites of the data from these 8 patients using the 
ggplot2 packages (version 3.3.3). GO/KEGG analysis, PPI 
analysis, and hub gene prediction were performed on the 
genes corresponding to the methylation sites obtained by 
the Venn diagram. Cell cycle abnormalities are a driving 
force in tumorigenesis. The genes related to the cell cycle 
obtained by cluster analysis were analyzed in the TCGA 
pan-cancer cohort. The RNAseq data were downloaded 
from UCSC XENA (https://​xenab​rowser.​net/​datap​ages/). 
The transcripts per million reads (TPM) format data was 
analyzed after log2 conversion. Statistical analyses and 
mapping were performed using R (version 3.6.3) and 
ggplot2 packages (version 3.3.3). The TCGA-LUAD and 
TCGA-LUSC RNAseq data were downloaded from the 
TCGA database (https://​portal.​gdc.​cancer.​gov). Statisti-
cal analyses and mapping were performed using R (ver-
sion 3.6.3), stats(version 4.2.1), car (version 3.1–0), pROC 
(version 1.18.0), and ggplot2 packages (version 3.3.3).

Results
Altered DNA methylation levels before and after 
short‑term smoking cessation
Paired analysis of the methylation levels of 8 patients 
before and after short-term smoking cessation showed 
differential expression in 3878 CpG sites (P < 0.001) 
(Fig.  1a). Regarding CpG distribution, islands account 
for 42%, open seas account for 29%, shelves account for 
4%, and shores account for 25% of CpG sites (Fig.  1b). 
A Circos plot was constructed for the whole genome 
display (Fig.  1c). 694/3878 differential methylation CpG 
sites were upregulated and 3184/3878 downregulated 
(Fig. 1d). Finally, a cluster graph was constructed to dis-
play these differentially methylated CpG sites and analyze 
their methylation values (Fig. 1e).

Correlation between differentially methylated sites 
and clinical features before and after short‑term smoking 
cessation
The clinical data, including body weight, tobacco depend-
ence score, and lung function, were collected from 8 
patients before and after short-term smoking cessation. 
The tobacco dependence score was based on the Fager-
strom test for nicotine dependence (FTND), and data 
were analyzed using a paired-sample t-test (Table  1). A 
correlation analysis was performed between differentially 
methylated CpG sites and clinical features, and signifi-
cant correlations were indicated by absolute values of the 
correlation coefficients > 0.8 and P value < 0.05 (Fig. 2).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov
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GO/KEGG analysis, PPI network construction, and hub 
gene identification based on the genes corresponding 
to upregulated methylation
Enrichment analysis examined the biological relevance 
of genes corresponding to the upregulated methylation 
sites. The GO analysis results showed that the major-
ity of enriched categories were myeloid leukocyte dif-
ferentiation and axonogenesis. The KEGG analysis 
showed that the most enriched categories were the 
AMPK signaling pathway, long-term depression, Fc 
gamma R-mediated phagocytosis, regulation of actin 
cytoskeleton, and Fc epsilon RI signaling pathway. The 
GO/KEGG analysis results are displayed in the histo-
gram (Fig.  3a) and divergence diagram simultaneously 
(Fig. 3b).

The top 100 genes corresponding to the upregulated 
methylation sites were entered into the STRING data-
base (https://​cn.​string-​db.​org/) to obtain PPIs; the results 
were visualized using the Igraph package (version 1.2.6) 

(Fig.  3c). The top 10 hub genes were acquired from 
Cytoscape using the MCC algorithm (Fig. 3d).

GO/KEGG analysis, PPI network construction, and hub 
genes identified based on the genes corresponding 
to downregulated methylation
The main enriched terms in the GO analysis were 
kinase regulator activity, P53 binding, transcription 
corepressor activity, cell-substrate junction, focal adhe-
sion, nucleolar part, regulation of mitotic cell cycle 
phase transition, cell cycle phase transition, and mRNA 
metabolism. The main enriched pathways in the KEGG 
analysis were the Hedgehog signaling pathway, the 
FOXO signaling pathway, and the cell cycle (Fig.  4a). 
The top 100 genes corresponding to the downregulated 
methylation sites were obtained from the STRING plat-
form (Fig.  4b). The hub genes based on the genes cor-
responding to the downregulated methylation sites are 
shown in Fig. 4c.

Fig. 1  Distribution of the differentially methylated CpG sites and clustering analysis before and after short-term smoking cessation. a Volcano plot 
of differentially methylated sites: red represents methylation levels elevated after short-term smoking cessation, blue represents methylation levels 
that declined after short-term smoking cessation. b Distribution of the CpG sites in CpG categories. c Genome-wide distribution of the differentially 
CpG sites. d The CpG sites number of short-term smoking cessation(Case) compared with before short-term smoking cessation (Control). e 
Graph-clustering was used to display these differentially methylated CpG sites and clustering analysis of their methylation values. Samples are 
accommodated in columns and DMCpGs in rows in the matrix. Colorbar denotes a comparison table of number and color (relatively high in red 
and relatively low in blue), the top sample tree represents a similar degree clustering relationship between samples, and samples of the same color 
indicate the same group. C1-C8: Control. N1-N8: Case. The darker the color, the greater the MCC value

https://cn.string-db.org/


Page 5 of 13Shang et al. World Journal of Surgical Oncology          (2023) 21:227 	

Differentially methylated CpGs with GSE50660
The Venn diagram showed that 108 methylated CpG 
sites overlapped between the data of these 8 patients 
and GSE50660 (Fig. 5a). The GO/KEGG analysis for the 
genes corresponding to these 108 methylated CpG sites is 
shown in Fig. 5b. A PPI network was constructed for the 
genes corresponding to these 108 methylated CpG sites 
(Fig. 5c) and the top 7 hub genes (Fig. 5d) were identified.

Pan‑cancer analysis
In the KEGG analysis (Fig. 5), five genes were related to 
the cell cycle (Table 2). The expression of these five genes 
in the pan-cancer dataset was assessed using unpaired 
(Fig.  6) or paired analysis (Fig.  7). The clinical signifi-
cance of these five genes in lung cancer is shown in Fig. 8. 
Table  3 presents the abbreviations of the 33 types of 
cancer.

Discussion
Smoking is a leading cause of preventable mortality 
worldwide. Smoking cessation can reduce the risk of 
disease, slow disease progression, and reduce mortal-
ity [22]. Clinician intervention increases the possibility 
that the patient will successfully quit smoking [23–25]. 
However, some studies have recently explored smoking-
related epigenetic changes and identified some DNA 
methylation sites associated with smoking [26–28]. Addi-
tionally, smoking cessation may restore the DNA meth-
ylation status of former smokers to almost the level of 
never-smokers [13]. Little research is available for pair-
ing DNA methylation data before and after short-term 
smoking cessation. Therefore, This research analyzed the 
level of DNA methylation in the whole blood of smok-
ers in paired samples before and after successful short-
term smoking cessation and explored the mechanisms 
underlying these associations to provide a basis for epi-
genetic changes after a short-term smoking cessation 
intervention.

Smoking alters DNA methylation. Smoking-associ-
ated DNA methylation can cause a variety of human 
diseases. The DNA methylation data analysis revealed 
that most DNA methylation levels were decreased after 
short-term smoking cessation, indicating that quitting 
smoking may reduce disease risk. In previous studies, 

Table 1  Clinical data of subjects before and after short-term 
smoking cession

* P < 0.05; **P < 0.001

Before After P value

Body weight (kg) 77.23 ± 10.24 79.62 ± 12.48 0.026*

Expiratory CO (ppm) 8.15 ± 2.97 3.01 ± 1.04 0.000**

Tobacco dependence score 6.69 ± 2.02 0.00 ± 0.00 0.000**

FEV1 (L) 2.80 ± 0.80 2.84 ± 0.79 0.337

FEV1% pred 83.21 ± 20.87 85.02 ± 19.16 0.459

FVC (L) 3.84 ± 0.00 3.97 ± 0.87 0.277

FVC% pred 96.09 ± 21.56 100.47 ± 17.39 0.133

FEV1/FVC% 72.89 ± 10.23 70.79 ± 8.66 0.301

FEF25 (L/S) 4.18 ± 2.03 5.02 ± 1.92 0.043*

FEF25% pred 53.26 ± 21.78 62.21 ± 23.08 0.076

FEF50 (L/S) 3.17 ± 1.63 3.06 ± 1.56 0.623

FEF50% pred 68.01 ± 36.89 65.81 ± 35.77 0.632

FEF75 (L/S) 1.22 ± 0.96 0.90 ± 0.44 0.321

FEF75% pred 51.66 ± 17.74 47.30 ± 19.92 0.338

MMEF (L/S) 2.30 ± 0.99 2.21 ± 1.01 0.599

MMEF% pred 59.44 ± 25.65 56.76 ± 24.49 0.550

PEF (L/S) 5.13 ± 1.83 5.93 ± 1.66 0.054

PEF% pred 53.63 ± 18.41 61.58 ± 16.61 0.096
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Fig. 2  The correlation analysis between differentially methylated CpG sites and clinical information. The abscissa represents different methylated 
CpG sites, the ordinate represents the clinical information differently. Red colors represent a positive correlation and blue colors represent 
a negative correlation, the darker the color, the larger the correlation values
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Fig. 3  The analysis of genes corresponding to the methylation sites up-regulated. a Histograms of GO/KEGG analysis, blue represent BP of GO 
analysis, red represent KEGG analysis. b Divergence diagram of GO/KEGG analysis, the size of the circle represents the number of enrichment. c PPI 
network of the top 100 genes corresponding to the methylation sites up-regulated. d The top 10 hub genes

Fig. 4  The analysis of genes corresponding to the methylation sites down-regulated. a Divergence diagram of GO/KEGG analysis, the size 
of the circle represents the number of enrichment. b PPI network of the top 100 genes corresponding to the methylation sites down-regulated. c 
The top 10 hub genes
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the effects of smoking and smoking cessation on clinical 
characteristics have gained widespread attention. Studies 
have also demonstrated that smoking cessation is often 
accompanied by weight gain. However, the underlying 

mechanisms might include decreased metabolic rate, 
increased lipoprotein lipase activity, shift in food pref-
erence, and increased caloric intake [29]. In this current 
study, half of the eight individuals were prone to body 

Fig. 5  The analysis between the 8 patients’ data and GSE50660. a The Venn diagram is based on the following data: differentially methylated CpG 
sites of GSE50660 between former and current smokers, and the down-regulated methylation sites of the 8 patients’ data. b Histograms of GO/
KEGG analysis, blue represents MF of GO analysis, and red represents KEGG analysis. c PPI network of the genes corresponding to these 108 
methylated CpG sites. d The hub genes correspond to these 108 methylated CpG sites

Table 2  The gene list of GO/KEGG analysis for the genes corresponding to 108 genes in common

Ontology ID Description Gene ID

MF GO: 0098631 Cell adhesion mediator activity CD47 / ITGB1 / RPSA / STXBP6 / VSTM2L

KEGG hsa05166 Human T-cell leukemia virus 1 
infection

CCNE1 / CDC20 / HLA-DQA2 / TCF3 / 
FOSL1 / MAD1L1 / CREB5

KEGG hsa04110 Cell cycle CCNE1 / CDC20 / WEE1 / YWHAZ / MAD1L1
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Fig. 6  The five genes associated with the cell cycle in pan-cancer using unpaired analysis. The abscissa represents different tumor types; 
the ordinate represents gene expression values. a The expression of CCNE1 in pan-cancer. b The expression of CDC20 in pan-cancer. c The 
expression of WEE1 in pan-cancer. d The expression of YWHAZ in pan-cancer. e The expression of MAD1L1 in pan-cancer
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Fig. 7  The five genes associated with the cell cycle in pan-cancer using paired analysis. a The expression of CCNE1 in pan-cancer. b The expression 
of CDC20 in pan-cancer. c The expression of WEE1 in pan-cancer. d The expression of YWHAZ in pan-cancer. e The expression of MAD1L1 
in pan-cancer
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weight gain after short-term cessation. Weight gain is 
also one of the reasons for the failure of smoking cessa-
tion. Weight gain can increase the risk of type 2 diabetes. 
Thus, taking interventions to prevent weight gain after 
quitting smoking is necessary. Chinn et  al. showed that 
people who gave up smoking had a lower rate of lung 
function decline than those who continued to smoke 
[30]. The results of the present study showed that FEV1 
and FVC tend to increase after quitting smoking; the 
differences are not significant; prompts to quit smoking 
can improve lung function decline to a certain extent. 

Smoking is a risk factor for asthma, and early smoke 
exposure is closely related to adolescent asthma [31, 32]. 
FeNO is a biomarker identifying allergic airway inflam-
mation with a diagnostic value for asthma [33]. Although 
the duration of quitting smoking for these 8 individuals 
was only short-term, the level of FeNO was significantly 
decreased. Hence, encouraging people to give up smok-
ing is necessary for asthma control.

The physiological mechanisms need to be better 
defined after quitting smoking; people also need to learn 
more about short-term smoking cessation. Bioinformatic 

Fig. 8  The clinical outcomes of CCNE1, CDC20, WEE1, YWHAZ, and MAD1L1 in lung cancer. a The gene expression for T-stage. b The gene 
expression for N-stage. c The gene expression for M-stage. d The gene expression for the pathologic stage. e The ROC curves of CCNE1, CDC20, 
WEE1, YWHAZ, and MAD1L1 to lung cancer. f The gene expression on overall survival (OS) in lung cancer
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analysis has provided an excellent way to explore the 
underlying cellular mechanisms. GO divides the func-
tion of genes into three parts: cellular component (CC), 
molecular function (MF), and biological process (BP). 
KEGG is a database of pathways. Genes correspond-
ing to differential DNA methylation can be classified 
through GO terms and KEGG pathway enrichment 
analysis to explore the biological processes further. As 
GO analysis for genes corresponding to up- and down-
regulated DMCpGs, respectively, for genes correspond-
ing to upregulated DMCpGs, the main enriched KEGG 
pathways include the AMPK signaling pathway and 
long-term depression signaling pathway. The AMPK and 
AMPK pathways are vital for energy metabolism, which 
promotes catabolic pathways to generate ATP. The 
involvement of AMPK may explain the changes in body 
mass after smoking cessation. Depression is one of the 
nicotine withdrawal syndromes [34]; also, the long-term 
depression pathway was highly enriched. A PPI network 
was used to display the association with biological sig-
nal transmission, gene expression regulation, energy and 
material metabolism, and cell cycle regulation. Next, 
the genes corresponding to up- and downregulated 
DMCpGs are used to construct the PPI network and 
identified the hub genes to identify the potential driver 
genes.

To increase the reliability, datasets correlated with 
smoking cessation in the NCBI GEO database were 
retrieved. After the systematic screening, GSE50660 was 
selected. The analysis of DMCpGs in these 8 patients’ 
data on differential DNA methylation levels between 

former and current smokers in GSE50660 revealed a 
total of 108 common methylation sites. GO/KEGG 
enrichment analysis was performed on the genes cor-
responding to these 108 methylation sites. KEGG 
enrichment analysis showed that the enriched of KEGG 
terms were cell cycle and human T-cell leukemia virus 
1 infection. The abnormal cell cycle is the critical fac-
tor for tumorigenesis [35]. Many tumor therapies reg-
ulate cell cycle progression [36]; thus, the cell cycle is 
critical for tumor oncology. Smoking is an independ-
ent risk factor for many tumor types [37, 38] and may 
have deleterious effects on cancer treatment [39]. The 
2014 Surgeon General’s report pointed out a causal 
correlation between smoking and all-cause and cancer-
specific mortality and an increased risk of disease pro-
gression and tobacco-related second primary cancers. 
DNA methylation has been confirmed to be involved in 
tumor development and is also one of the characteris-
tics of tumors [40]. Five genes were enriched in the cell 
cycle, including CCNE1, CDC20, WEE1, YWHAZ, and 
MAD1L1. The overexpression of CCNE1 causes genetic 
instability of tumor cells and tumor-type development 
[41]. Multiple bioinformatics analyses suggested that 
CDC20 could be a potential therapeutic target [42, 
43]. Inhibition of WEE1 might have a critical role in 
antitumor responses [44, 45]. YWHAZ promotes the 
progression of gastric cancer, prostate cancer, and hepa-
tocellular carcinoma [46–48]. MAD1L1, also known 
as mitotic arrest deficient-like 1, was associated with a 
poor prognosis and insensitivity to paclitaxel in breast 
cancer [49]. The analysis showed that these five genes 

Table 3  The abbreviation of 33 types of cancer

Full name Abbreviation Full name Abbreviation Full name Abbreviation

Adrenocortical carcinoma ACC​ Bladder Urothelial Carcinoma BLCA Breast invasive carcinoma BRCA​

Cervical squamous cell 
carcinoma and endocervical 
adenocarcinoma

CESC Cholangiocarcinoma CHOL Colon adenocarcinoma COAD

Lymphoid neoplasm diffuse 
large B-cell lymphoma

DLBC Esophageal carcinoma ESCA Glioblastoma multiforme GBM

Head and neck squamous cell 
carcinoma

HNSC Kidney chromophobe KICH Kidney renal clear cell carcinoma KIRC

Kidney renal papillary cell 
carcinoma

KIRP Acute myeloid leukemia LAML Lower grade glioma LGG

Liver hepatocellular carcinoma LIHC Lung adenocarcinoma LUAD Lung squamous cell carcinoma LUSC

Mesothelioma MESO Ovarian serous cystadenocar-
cinoma

OV Pancreatic adenocarcinoma PAAD

Pheochromocytoma and para-
ganglioma

PCPG Prostate adenocarcinoma PRAD Rectum adenocarcinoma READ

Sarcoma SARC​ Skin cutaneous melanoma SKCM Stomach adenocarcinoma STAD

Testicular germ cell tumor TGCT​ Thyroid carcinoma THCA Thymoma THYM

Uterine corpus endometrial 
carcinoma

UCEC Uterine carcinosarcoma UCS Uveal melanoma UVM
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are highly expressed in most tumor types irrespective of 
paired or unpaired analysis using the TCGA database. 
Enriching genes related to the cell cycle after smoking 
cessation may be one of the reasons why smoking ces-
sation decreases tumor-related mortality risk. Smoking 
is one of the main factors for lung cancer (50). Further 
explore the clinical implications of these five genes in 
lung cancer, providing indirect evidence of the advan-
tages of smoking cessation.

Nevertheless, the present study has some limita-
tions. All patients came from smoke cessation clinics. 
Patients who attended smoke cessation clinics were 
people who could not quit smoking by themselves. 
Despite the extensive efforts to promote smoking ces-
sation, only some people take the initiative to quit 
smoking. Moreover, some disagreed with participating 
in the research, resulting in a small number of cases in 
this study. A total of 90 patients were recruited in this 
study. Unfortunately, only 13 people successfully quit 
smoking over the 3 − 6  months following enrolment. 
Eight of the 13 patients received fractional exhaled 
nitric oxide (FeNO) and lung function assessment 
before and after the target smoking cessation date. 
Therefore, all clinical data and DNA methylation anal-
yses were based on these 8 patients. Influenced by the 
local characteristics, all the participants in the smok-
ing cessation study were men, so this study lacks data 
on smoking cessation in women.

Conclusions
DNA methylation sequencing was performed and a 
decrease in global DNA methylation in whole blood 
after short-term cessation for patients with smoking 
history. The clinical significance of this result was per-
formed by the correlation analysis between CpG sites 
and clinical features. Furthermore, bioinformatics anal-
ysis was used to explore the potential mechanism. The 
changes indicate a general improvement in lung func-
tion gleaned from correlation analyses between CpG 
sites and clinical features. The data also confirms previ-
ous findings that short-term cessation can also lead to 
unwanted companion effects such as weight gain that 
may put patients at a higher risk of developing diabe-
tes. This observation calls for monitoring patients that 
undergo short-term cessation, eventually using DNA 
methylation profiles for better surveillance.
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