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Cyclooxygenase/lipoxygenase shunting lowers
the anti-cancer effect of cyclooxygenase-2
inhibition in colorectal cancer cells
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Abstract

Background: Arachidonic acid metabolite, generated by cyclooxygenase (COX), is implicated in the colorectal
cancer (CRC) pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of
non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this
might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX) pathway. Cancer cell
viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2).
Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the
shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if
this process antagonizes the anti-cancer effect in colorectal cancer cells.

Methods: Three colorectal cancer cell lines (HCA7, HT-29 & LoVo) expressing 5-LOX and different levels of COX-2
expression were used. The effects of aspirin (a non-selective COX inhibitor) and rofecoxib (COX-2 selective) on
prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) secretion were quantified by ELISA. Proliferation and viability were
studied by quantifying double-stranded DNA (dsDNA) content and metabolic activity. Apoptosis was determined by
annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent
substrate assay.

Results: COX inhibitors suppressed PGE2 production but enhanced LTB4 secretion in COX-2 expressing cell lines
(P<0.001). The level of COX-2 expression in colorectal cancer cells did not significantly influence the
anti-proliferative and pro-apoptotic effects of COX inhibitors due to the shunting mechanism.

Conclusions: This study provides evidence of shunting between COX and 5-LOX pathways in the presence of
unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors.
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Background
Colorectal cancer (CRC) remains a leading cause of can-
cer death, with highest incidence in westernized popula-
tions. The pathogenic sequence is well-understood, with
characteristic genetic and biochemical abnormalities
underlying the adenoma-carcinoma progression [1]. The
long phase of progressive premalignant lesions, coupled
with the availability of appropriate investigations, pro-
vides an opportunity for intervention and primary
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reproduction in any medium, provided the or
prevention. A number of chemopreventative strategies
have been postulated. There is substantial evidence that
diet modifies risk, [2,3] and oral agents that show prom-
ise include folate, statins, calcium, ursodeoxycholic acid
and cyclooxygenase (COX) inhibitors [4-7].
Metabolites of arachidonic acid (AA) are important

mediators in the adenoma-carcinoma sequence [8-10].
COX and 5-lipoxygenase (5-LOX) are the key enzymes
involved in the generation of prostaglandins and leuko-
trienes respectively from this precursor. These were
originally identified as playing important roles in the
modulation of inflammation. Cyclooxygenase has two iso-
forms: COX-1 and COX-2. The former is constitutively
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expressed in most tissues, whereas the latter is an
immediate-to-early response gene [11]. It is undetectable
in most normal tissues, but is upregulated in colorectal
neoplasms and their precursor lesions, [12] in which levels
of downstream prostaglandin E2 (PGE2) are also elevated
[13]. Genetic manipulation studies have shown a causal
role for COX-2 in carcinogenesis in cytological and animal
models [14-16]. Inhibition of COX-2 activity reverses
CRC carcinogenesis in these systems, [17] and has been
shown to induce apoptosis, and inhibit proliferation and
angiogenesis [18,19]. Similar data have also recently
emerged for 5-LOX [20,21]. Expression of 5-LOX has
been demonstrated in some cancer cells and is involved
in the pathogenesis of cancer. Interestingly, 5-LOX
appears to have similar mechanisms to COX-2 in the
regulation of cell viability, although these two enzymes
often utilize different signaling pathways. Furthermore, it
was suggested that arachidonic acid might be shunted
from one pathway to the other when a particular pathway
is inhibited in the cellular processes of cancer [22] and
inflammation [23].
COX inhibitors are potentially attractive drugs for the

chemoprevention of colorectal cancer, and have been
reported to induce regression of polyps in patients with
familial adenomatous polyposis [24]. Observational
studies suggest a protective effect of non-steroidal
anti-inflammatory drugs (NSAIDs), [25] which non-
specifically inhibit COX-2 and its isoform COX-1. Use
of these agents is, however, unfortunately limited by
gastrointestinal and renal side-effects [26]. Specific
COX-2 inhibitors were developed to circumvent these
issues, although reports suggest that they are associated
with significant cardiovascular adverse effects [27].
Studies evaluating anti-carcinogenic properties of

COX-2 inhibitors however have not shown consistent
results. There is a mismatch between the growth-
suppressing effect of COX-2 inhibitors [28,29] and pro-
carcinogenic effect of prostaglandins [30]. It is possible
that the shunting of AA between COX-2 and 5-LOX
that utilize AA will bypass COX-2 inhibition. In cells
expressing both enzymes, inhibition of one in isolation
may shunt metabolism preferentially down the other
pathway, leading to paradoxically increased production
of selected eicosanoids. In the presence of COX-2 and
5-LOX expression in cancer cells, combined inhibition
of these pathways would likely to be a more effective
anti-cancer modality with fewer side-effects.
Here we investigated the effects of NSAIDs on eico-

sanoid production from colorectal cancer cell lines
expressing different level of COX-2 and its consequent
anti-neoplastic effects. In this study, we hypothesized
that in the presence of shunting between COX-2 and
5-LOX pathway, COX-2 inhibition might fail to show
anti-cancer effect irrespective of COX-2 expression.
Thus shunting of AA between COX-2 and 5-LOX path-
ways that utilize AA may bypass COX-2 inhibition.

Methods
Cell lines
Three human colon adenocarcinoma cell lines (HCA-7,
HT29 and LoVo) were studied in vitro (European Collec-
tion of Cell Cultures, Salisbury, UK). HCA-7 expresses
functional COX-2, and was cultured in Dulbecco's Modi-
fied Eagle Medium (DMEM) with L-glutamine (Sigma,
Gillingham, UK). HT29 expresses an enzymatically in-
active COX-2 isoform [31], and was cultured in McCoy’s
5A medium (Sigma). LoVo is derived from a metastatic
adenocarcinoma not expressing COX-2, and was grown
in Ham’s F-12 medium with L-glutamine (Sigma). Media
were supplemented with 10% fetal bovine serum, penicillin
and streptomycin (2%). Cells were incubated at 37°C in 5%
CO2, grown to 90% confluence in 75 cm2 flasks, and tryp-
sinized and plated for experiments as described below.
Following overnight incubation, medium was exchanged

for that containing test reagent. Rofecoxib (Merck,
Nottingham, UK) was dissolved in DMSO to a stock con-
centration of 100 mM and was then diluted in medium to
the final concentrations. Aspirin (Sigma) was dissolved
in 1 M Tris-HCl to a stock concentration of 1 M with
pH adjusted to 7. Negative controls were the equivalent
media containing no drug.

Eicosanoid production
PGE2 and leukotriene B4 (LTB4) secretion were quanti-
fied by ELISA (Cayman Chemicals, Tallinn, Estonia) as
previously described [32]. Cells (1x105) were plated over-
night in 25 cm2 flasks and were then treated with the
test reagents for 4 hours in serum-free medium. Super-
natants were assayed and concentrations normalized to
the number of adherent cells in the sample culture.

Proliferation
Cells were grown in 25 cm2 flasks at a concentration of
1x105 cells/ml, treated for 24, 48 or 72 hours, and were
then trypsinized and centrifuged into pellets. These were
homogenized using a 25 gauge needle to release DNA,
which was measured using the Picogreen™; dsDNA
Assay kit (Invitrogen, Paisley, UK) as previously
described [33]. We used this assay to quantify double-
stranded DNA using a fluorescence readout (excitation:
485 nm, emission: 538 nm) on a Fluroskan Ascent FL
spectrofluorometer (Thermo Life Sciences, Basingstoke,
UK). Reduction in proliferation is expressed as a per-
centage of the appropriate control.

Viability
Viability was assessed by alamar blue (Serotec, Oxfordshire,
UK) reduction, which provides a colorimetric readout of
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the reducing environment of proliferating cells. Cells
were plated in 24-well plates at a concentration of 1x104

cells/ml, and treated for 24, 48 or 72 hours; viability at
baseline was >95%. After treatment, medium was
exchanged for that containing 10% alamar blue. After 4
hours, 100 μL of supernatant was transferred to a 96-
well plate and read in a fluorescence plate reader (exci-
tation: 560 nm, emission: 590 nm). Viability following
drug treatment was compared to the appropriate con-
trol and expressed as a percentage.

Apoptosis
Apoptosis was quantified by annexin-V and propidium
iodide staining, using Annexin V-FITC apoptosis detec-
tion assay kit (Calbiochem, Nottingham, UK). Cells
were plated in six-well plates at a concentration of
1x105 cells/ml, and treated for 24, 48 and 72 hours,
washed with phosphate-buffered saline (PBS) and trea-
ted with assay buffer, Annexin-FITC and propidium
iodide as per the protocol described by the manufac-
turer. Apoptotic cells were detected under fluorescence
microscopy, with early apoptotic cells exposing phos-
phatidyl serine at the cell wall and appearing green on
the cell membrane surface and late apoptotic cells stain-
ing red throughout the cytoplasm. Apoptosis in each
group was quantified as the percentage of apoptotic
cells per high power field.
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Figure 1 Effect of aspirin and rofecoxib on (A) prostaglandin E2 and (
cultured without agents (dose 0); with 1 μM rofecoxib, 10 μM aspirin (dose
1,000 μM aspirin (dose 3). Mean and standard deviations of triplicate culture
Caspase-3/7 activity
The enzymatic activity of caspase-3/7 was measured using
a commercially available fluorescent assay, according to
the instructions from the manufacturer. Cells were grown
in 96-well plates at a concentration of 1x103 cells/well,
and treated with test drugs for 12, 24, 48 or 72 hours.
After treatment the level of caspase activity was measured
using the Apo-ONEW homogenous caspase-3/7 assay
(Promega, Southampton, UK), which employs a pro-
fluorescent caspase-3/7 substrate that once activated can
be detected using a fluorescence plate reader (excitation:
499 nm, emission: 521 nm).
Statistical analysis
All experiments were repeated a minimum of three
times. Statistical analyses were conducted using Graph-
Pad Prism v4.1 (GraphPad Software, La Jolla, CA, USA)
using a two-way Analysis of Variance (ANOVA) with
Bonferroni post-test correction. A P value <0.05 was
considered significant.
Results
Eicosanoid production
PGE2 production was assayed as a biologically relevant
indicator of functional COX-2 activity. Consistent with
the level of COX-2 expression in each cell type, HCA7
s
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cells produced the highest concentrations. HT29 cells ex-
press an inactive isoform, and LoVo cells do not express
COX-2; PGE2 release was minimal from these cells. Treat-
ment with aspirin was associated with concentration-
dependent reduction in PGE2 levels in all cell lines
(P<0.001). Rofecoxib, as a specific COX-2 inhibitor,
reduced PGE2 production only in HCA7 cells (Figure 1A).
LTB4 was produced by all cells. Aspirin caused a sig-

nificant increase in production from HCA7 cells
(P <0.001) and a moderate increase in HT29 and LoVo
cells that was not significant. Rofecoxib caused a signifi-
cant increase in LTB4 production in HCA7 cells
(P <0.001) but did not cause a significant amount of pro-
duction in other cell lines. (Figure 1B) LTB4 was pro-
duced by all cells but treatment with aspirin and
rofecoxib either increased its production or did not alter
its production dependent on cell line.
Proliferation
We subsequently determined the ability of the test agents
to inhibit cellular proliferation. Within 24 hours there was
less than 5% reduction in proliferation by aspirin and
rofecoxib. Aspirin caused significant inhibition of prolif-
eration only after 72 hours at 1mM dose (P<0.05). Rofe-
coxib did not significantly affect proliferation in any cell
line (Table 1). There were no significant differences in the
inhibitory capacities between cell lines.
The assay used to examine proliferation is indirect in

that it measures absolute numbers of cells. We therefore
tested whether the decreased proliferative potential was
due to reduced viability. Aspirin reduced viability by less
than 10% in all cell lines at the higher dose used and
was only significant at 72 hours at the 1 mM dose
Table 1 Effects of aspirin and rofecoxib on cellular proliferati

24 h Dose HCA7

aspirin rofecoxib

A 2.0 ± 1.3 1.7 ± 1.4

B 2.9 ± 1.9 1.6 ± 0.6

C 2.4 ± 1.1 2.2 ± 0.8

48 h Dose HCA7

aspirin rofecoxib

A 2.3 ± 1.2 2.3 ± 1.4

B 3.6 ± 1.8 2.5 ± 0.8

C 6.0 ± 2.7 3.8 ± 1.4

72 h Dose HCA7

aspirin rofecoxib

A 4.6 ± 1.7 2.9 ± 1.6

B 5.0 ± 1.6 3.5 ± 2.0

C 7.7 ± 1.9 4.0 ± 1.6

The cells were cultured with 1 μM rofecoxib, 10 μM aspirin (dose A); 10 μM rofecoxib
and standard deviations are shown.
(P <0.05). Rofecoxib did not affect viability significantly
in any cell line tested (Figure 2).

Apoptosis
Chemopreventative properties of agents often correlate
with the degree of induction of apoptosis, which appears
to provide a reliable biomarker for the evaluation of po-
tential novel therapeutic agents. We quantified the num-
ber of apoptotic cells using Annexin-V/propidium iodide
staining. Annexin-V binds phosphatidyl serine that is
externalized to the cell surface with the loss of mem-
brane integrity occurring during the early stages of
apoptosis. Propidium iodide differentiates late apoptotic
and necrotic cells as it can only permeate cells during
these stages (Figure 3A). Aspirin did not induce signifi-
cant apoptosis for up to 48 hours in all cell lines. Aspirin
at 1 mM caused significant apoptosis only at 72 hours of
treatment (P <0.05), and rofecoxib had no apoptotic ef-
fect in all cell lines (Figure 3B).
Caspase induction is the final common pathway in the

various apoptotic signaling cascades. It is activated in ad-
vance of any morphological changes of apoptosis. Cas-
pase activity was induced to a significant level by aspirin
at 1 mM after 48 hours of treatment in all cell lines and
its activity declined at 72 hours. Aspirin at lower dose
and rofecoxib failed to induce significant caspase activity
in all cell lines (Figure 3C).
Discussion
Aberrant arachidonic acid metabolism is implicated in
CRC carcinogenesis [34]. Manipulation of these pathways
offers novel therapeutic strategies to prevent or reverse
neoplasia. COX and 5-LOX are the two important
on, expressed as reduction relative to control

HT29 LoVo

aspirin rofecoxib aspirin rofecoxib

1.2 ± 0.9 1.3 ± 0.9 1.0 ± 0.3 0.9 ± 0.5

1.9 ± 1.3 1.1 ± 0.2 1.5 ± 0.6 1.7 ± 1.3

1.7 ± 0.7 1.8 ± 0.8 1.5 ± 0.6 1.8 ± 1.0

HT29 LoVo

aspirin rofecoxib aspirin rofecoxib

2.0 ± 0.9 1.5 ± 0.6 1.8 ± 0.6 1.4 ± 0.8

2.6 ± 1.7 2.2 ± 1.0 2.7 ± 1.2 2.4 ± 1.3

3.7 ± 1.7 2.4 ± 1.4 2.7 ± 1.2 2.7 ± 0.9
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3.4 ± 1.6 3.0 ± 1.8 2.5 ± 1.0 2.4 ± 0.8

4.8 ± 2.3 2.9 ± 1.4 2.8 ± 0.9 2.3 ± 1.0

6.5 ± 2.0 4.1 ± 1.8 5.3 ± 1.8 2.9 ± 1.6

, 100 μM aspirin (dose B); or 100 μM rofecoxib, 1,000 μM aspirin (dose C). Mean
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enzymes involved in the generation of prostaglandins and
leukotrienes. In particular, COX-2 expression is upregu-
lated in CRC and NSAIDs may reverse the carcinogenic
process by inhibiting this enzyme. Recent studies also have
shown that 5-LOX is expressed in colorectal adenocarcin-
omas and elevated expression of this enzyme appears to
correlate with tumor aggressiveness [20], although the
exact mechanism remains incompletely understood. The
5-LOX product leukotriene B4 is shown to promote colo-
rectal cancer in an experimental model [35]. It seems
likely, however, that COX-2 and 5-LOX represent an
integrated system with a common substrate that regu-
lates the proliferative, metastatic and pro-angiogenic
potential of cancer cells. Both enzymes induce cell cycle
progression and block apoptosis, enhance chemoresis-
tance, and stimulate angiogenesis, with one convergent
target on vascular endothelial growth factor (VEGF) ex-
pression and release [36].
COX and 5-LOX are frequently co-expressed, and in-

hibition of a single pathway may shunt arachidonic acid
metabolism towards the alternative enzyme. The striking
similarities between their biological functions suggest
that molecules that equally block both COX-2 and
5-LOX may represent a novel and promising alternative
in colon cancer treatment. In support of this mechan-
ism, studies have shown that dual inhibition of COX-2
and 5-LOX have additive anti-cancer effects when com-
pared to inhibition by either enzyme alone [37].
Whereas 5-LOX is universally expressed by all epithe-

lial cancer cell lines COX-2 expression is variable [38].
The proposed shunting mechanism requires the expres-
sion of both enzymes. We intended to investigate that
this phenomenon of shunting was not due to COX-2 in-
dependent process. Therefore, we used three cancer cell
lines with differential COX-2 expression and activity to
assess the shunting mechanism. HCA7 cells express
active COX-2, HT29 cells express an enzymatically
inactive variant [31] and LoVo cells do not express
COX-2; all express 5-LOX. We found that HCA7 cells
produced excess PGE2 by overexpressed COX-2, which
was significantly reduced following aspirin and rofecoxib
treatment. We observed, that in HCA7 cells, aspirin and
rofecoxib treatment caused a reciprocal increase in LTB4

secretion. These results confirm the shunting hypothesis.
In HT29 and LoVo cells with inactive and absent COX-
2 expression LTB4 secretion was not affected by COX-2
inhibition.
We next wanted to assess the anti-carcinogenic poten-

tial of an NSAID. Aspirin treatment did not induce sig-
nificant anti-carcinogenic effect for up to 48 hours. Only
at 72 hours did 1000 μM aspirin cause a significant anti-
cancer effect. Rofecoxib exhibited no anti-cancer effect
at all times tested. The level of COX-2 expression of the
cell did not have any impact on the anti-carcinogenic
effects of NSAID. In COX-2 expressing cells, inhibition
of COX-2 caused shunting of AA to the 5-LOX pathway
resulting in carcinogenic LTB4 production. An increase
in LTB4 antagonizes the anti-carcinogenic effect caused
by a reduction in prostaglandin synthesis. In cells with
inactive and absent COX-2 expression, COX-2 inhibition
is unlikely to affect its growth. These observations sug-
gest at least partially the existence of a shunting mech-
anism as well as COX-2 independent effects, and may
underscore the importance of simultaneous inhibition of
leukotriene production. Activity solely targeting the
COX enzymes may be insufficient, possibly contributing
to the previous conflicting results in this field [39].
The centrality of COX-2 in the anti-neoplastic actions

of NSAIDs has also been questioned; for example, stud-
ies have demonstrated that replacement of prostaglan-
dins fails to reverse their anti-cancer effects [40].
Additionally, sulindac is a pro-drug that is converted
in vivo into its active sulfide and sulfone metabolites.
Both of these metabolites inhibit colon cancer cell
growth although only the sulfide inhibits prostaglandin
synthesis. Finally, NSAIDs can induce apoptosis in
HCT-15 cells, which lack COX transcripts [41]. All
HCT-15 cells lack COX transcript.
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Figure 3 Effects of 1,000 μM aspirin and 100 μM rofecoxib on apoptosis. Representative images from light microscopy and
immunofluorescence (demonstrating propidium iodide and annexin-V staining) of HCA 7, HT29 and LoVo cells with no agent (control containing
DMSO and TRIS), rofecoxib and aspirin (A). The apoptosis of cells is shown as percentage at 24, 48 and 72 hours by 1000 μM aspirin, 100 μM
rofecoxib. Results are expressed as mean percentage of apoptosis +/− SD (*P<0.05) (B). Caspase-3/7 activation relative to control at 12 and 48
hours. Mean and standard deviations of triplicate cultures shown (C).
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Conclusion
This study confirms the process of shunting of arachidonic
acid metabolism between the COX and 5-LOX pathways
in the presence of inhibition of one of these enzymes. The
shunting mechanism may explain the failure of COX-2
inhibitors to cause significant anti-carcinogenic effect. The
observed in vitro effects should be reproduced in an ani-
mal model to provide evidence for the role of the shunting
mechanism in vivo. Intervention that inhibits both the
COX-2 pathway and the 5-LOX pathway will prove to be
an effective anti-carcinogenic agent.
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